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Counting Types
Let L be a language, M an L-structure, φ(x , y) ∈ L with |x | = 1, and
B ⊆ M |y |.
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Set Systems

Definition

Let X be a set and S ⊆ P(X ). We call the pair (X ,S) a set system.

Definition

Given A ⊆ X , define

S ∩ A = {B ∩ A : B ∈ S}.

We say A is shattered by S iff: S ∩ A = P(A).
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The Shatter Function and VC Dimension

Definition

The function πS : ω → ω given by

πS(n) = max{|S ∩ A| : A ∈ [X ]n}

is called the shatter function of S.

Definition

The Vapnik-Chervonenkis (VC) dimension of S is

VC(S) = sup{n < ω : S shatters some A ∈ [X ]n}
= sup{n < ω : πS(n) = 2n}.
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Example: X = R, S = Half-Spaces

VC(S) ≥ 2:

VC(S) < 3:
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Example: X = R2, S = Half-Spaces

VC(S) ≥ 3 :

VC(S) < 4 :
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VC Density and the Sauer-Shelah Lemma

Definition

The VC density of S is

vc(S) = inf
{
r ∈ R>0 : πS(n) = O(nr )

}
= lim sup

n→ω

log π(n)

log n
.

Lemma (Sauer-Shelah)

If VC(S) = d < ω, then for all n ≥ d, we have

πS(n) ≤
(
n

0

)
+ · · ·+

(
n

d

)
= O(nd).

Corollary

vc(S) ≤ VC(S).
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Example: When S is “uniform,” VC dimension and VC
density agree.

Let X be an infinite set and S = [X ]≤d for some d < ω.

We have

πS(n) =

(
n

0

)
+ · · ·+

(
n

d

)
,

so

VC(S) = vc(S) = d .
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Example: VC dimension is more susceptible to local
anomalies than VC density.

Let X = ω,m < ω, and S = P(m).

It follows that

πS(n) =

{
2n if n ≤ m

2m otherwise.

So

VC(S) = m
and

vc(S) = lim sup
n→ω

log 2m

log n
= 0.
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The Dual Shatter Function

Definition

Given A1, ...,An ⊆ X , let S(A1, ...,An) denote the set of nonempty atoms
in the Boolean algebra generated by A1, ...,An. That is

S(A1, · · · ,An) =

{
n⋂

i=1

A
σ(i)
i : σ ∈ n2

}
\∅

where A1
i = Ai and A0

i = X \ Ai .

Definition

The function π∗S : ω → ω given by

π∗S(n) = max{|S(A1, ...,An)| : A1, ...An ∈ S}

is called the dual shatter function of S.
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Independence Dimension and Dual VC Density

Definition

The independence dimension (a.k.a. dual VC dimension) of S is

IN(S) = VC∗(S) = sup {n < ω : π∗S(n) = 2n} .

Definition

The dual VC density of S is

vc∗(S) = inf
{
r ∈ R>0 : π∗S(n) = O(nr )

}
.
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Example: X = R, S = Half-Spaces

IN(S) ≥ 1:

IN(S) < 2:
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Example: X = R2, S = Half-Spaces

IN(S) ≥ 2 :
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Example: X = R2, S = Half-Spaces

IN(S) < 3 :
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Breadth and Directed Systems

Definition

Suppose there is a t < ω such that for all n > t, if A ∈ [S]n and⋂
A 6= ∅, then there is a subfamily B ∈ [A]t such that

⋂
A =

⋂
B. We

call the least such t the breadth of S and denote it as breadth(S).

Definition

We call S directed iff: breadth(S) = 1.

Example: Let (K , Γ, v) be a valued field.
The set system (X ,S) where X = K and

S = {Bγ(a) : a ∈ K , γ ∈ Γ} ∪ {Bγ(a) : a ∈ K , γ ∈ Γ}

is directed.
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Independence Dimension is Bounded by Breadth

Lemma

IN(S) ≤ breadth(S).

Proof: Suppose 0 < n = IN(S) < ω.

There exists A ∈ [S]n such that S(A) = 2n.

It follows that
⋂
A 6= ∅.

Let A0 ∈ A, B = A \ A0.

Since (X \ A0) ∩ (
⋂
B) 6= ∅, we have

⋂
A 6=

⋂
B.

It follows that breadth(S) > n − 1.
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Set Systems in a Model-Theoretic Context

Consider a sorted language L with sorts indexed by I .

Let M be an L-structure with domains (Mi : i ∈ I ).

Definition

Given an L-formula φ(x , y) where x = (x i11 , ..., x
is
s ) and y = (y j1

1 , ..., y
jt
t ),

define

Sφ = {φ(X , b) : b ∈ Y }

where X = Mi1 × · · · ×Mis and Y = Mj1 × · · · ×Mjt .

It follows that (X ,Sφ) is a set system. To ease notation, we let:

πφ denote πSφ , VC (φ) denote VC (Sφ), and vc(φ) denote vc(Sφ).

Similarly, we use π∗φ for π∗Sφ , VC∗(φ) for VC∗(Sφ), and vc∗(φ) for vc∗(Sφ).
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The dual shatter function of φ is really counting φ-types.

By definition, we have π∗φ(n) = max {|S(φ(X , b) : b ∈ B)| : B ∈ [Y ]n}.

Let B ∈ [Y ]n. Recall that

S(φ(X , b) : b ∈ B) =

{⋂
b∈B

φσ(b)(X , b) : σ ∈ B2

}
\∅.

There is a bijection

S(φ(X , b) : b ∈ B) −→
{

tpφ(a/B) : a ∈ X
}

= Sφ(B)

given by ⋂
b∈B

φσ(b)(X , b) 7−→
{
φσ(b)(x , b) : b ∈ B

}
.

It follows that
|S(φ(X , b) : b ∈ B)| = |Sφ(B)|.

Roland Walker (UIC) VC Dimension, VC Density, & ACVF 2016 19 / 48



The Dual of a Formula

Definition

We call a formula φ(x ; y) a partitioned formula with object variable(s)
x = (x1, ..., xs) and parameter variable(s) y = (y1, ..., yt).

Definition

We let φ∗(y ; x) denote the dual of φ(x ; y), meaning φ∗(y ; x) is φ(x ; y)
but we view y as the object and x as the parameter.

It follows that

Sφ∗ = {φ∗(Y , a) : a ∈ X}
= {φ(a,Y ) : a ∈ X}.

Roland Walker (UIC) VC Dimension, VC Density, & ACVF 2016 20 / 48



The shatter function of φ∗ is also counting φ-types.

By definition, we have πφ∗(n) = max {|Sφ∗ ∩ B| : B ∈ [Y ]n} .

Let B ∈ [Y ]n. It follows that

Sφ∗ ∩ B = {φ∗(B, a) : a ∈ X}
= {φ(a,B) : a ∈ X}

There is a bijection

{φ(a,B) : a ∈ X} −→ {tpφ(a/B) : a ∈ X} = Sφ(B)

given by
φ(a,B) 7−→ tpφ(a/B).

It follows that
|Sφ∗ ∩ B| = |Sφ(B)|.
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Duality in a Model-Theoretic Context

Lemma

The dual shatter function of φ is the shatter function of φ∗.
That is π∗φ = πφ∗ .

Proof: For all n < ω, we have

π∗φ(n) = max{|S(φ(X , b) : b ∈ B)| : B ∈ [Y ]n}
= max{|Sφ(B)| : B ∈ [Y ]n}
= max{|Sφ∗ ∩ B| : B ∈ [Y ]n}
= πφ∗(n).

Corollary

VC∗(φ) = VC(φ∗) and vc∗(φ) = vc(φ∗).
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VC(φ) < ω ⇐⇒ VC∗(φ) < ω

Lemma

VC(φ) < 2VC∗(φ)+1.

Proof: Suppose VC(φ) ≥ 2n, there exists A ∈ [X ]2
n

shattered by Sφ.

Let {aJ : J ⊆ n} enumerate A.

For all i < n, let bi ∈ Y such that M |= φ(aJ , bi )⇐⇒ i ∈ J.

Let B = {bi : i < n}.
It follows that Sφ∗ shatters B, so VC(φ∗) ≥ n.

Corollary

VC∗(φ) < 2VC(φ)+1.

Corollary

VC(φ) < ω ⇐⇒ VC∗(φ) < ω.
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Duality in the Classical Context

Given (X ,S) a set system, let M = (X ,S,∈), and φ(x , y) be x ∈ y .

It follows that S = Sφ, so by definition, πS = πφ and π∗S = π∗φ.

Let X ∗ = S and

S∗ = {{B ∈ S : a ∈ B} : a ∈ X}
= {φ∗(S, a) : a ∈ X}.

It follows that S∗ = Sφ∗ , so by definition, πS∗ = πφ∗ and π∗S∗ = π∗φ∗ .

Definition

We call (X ∗,S∗) the dual of (X ,S).

Lemma

π∗S = πS∗ and π∗S∗ = πS .

Proof: π∗S = π∗φ = πφ∗ = πS∗ and π∗S∗ = π∗φ∗ = πφ = πS .
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Duality in the Classical Context

Corollary

VC∗(S) = VC(S∗) and vc∗(S) = vc(S∗).

Corollary

For any set system (X ,S), we have

VC(S) < 2VC∗(S)+1

and
VC∗(S) < 2VC(S)+1.

Corollary

VC(S) < ω ⇐⇒ VC∗(S) < ω.
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Recap: Set Systems in a Model Theoretic Context

Let L be a language, M an L-structure, and φ(x , y) ∈ L.

Sφ =
{
φ
(
M |x |, b

)
: b ∈ M |y |

}
πφ(n) = max

{
|Sφ ∩ A| : A ∈

[
M |x |

]n}
= max

{
|Sφ∗(A)| : A ∈

[
M |x |

]n}
VC(φ) = sup {n < ω : πφ(n) = 2n}

vc(φ) = inf
{
r ∈ R>0 : πφ(n) = O(nr )

}
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Recap: Duality in a Model Theoretic Context

S(A1, · · · ,An) =

{
n⋂

i=1

A
σ(i)
i : σ ∈ n2

}
\∅

π∗φ(n) = max {|S(A1, ...,An)| : A1, ...,An ∈ Sφ}

= max
{
|Sφ(B)| : B ∈

[
M |y |

]n}

IN(φ) = VC∗(φ) = sup
{
n < ω : π∗φ(n) = 2n

}
vc∗(φ) = inf

{
r ∈ R>0 : π∗φ(n) = O(nr )

}
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Elementary Properties

Lemma

π∗φ is elementary (i.e., elementary equivalent L-structures agree on π∗φ).

Proof: Given n < ω, let σ ∈ P(n)2. Consider the L-sentence

∃y1, ..., yn
∧
J⊆n

[
∃x

n∧
i=1

φ[i∈J](x , yi )

]σ(J)

.

Corollary

VC∗(φ) and vc∗(φ) are elementary.

Corollary

VC(φ) and vc(φ) are elementary.
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NIP Formulae

Let T be a complete L-theory, and let φ(x , y) ∈ L.

Definition

We say φ has the independence property (IP) iff: for some M |= T , there
exists sequences (aJ : J ⊆ ω) ⊆ M |x | and (bi : i < ω) ⊆ M |y | such that

M |= φ(aJ , bi ) ⇐⇒ i ∈ J.

If φ is not IP, we say φ is NIP.

Lemma

φ is IP ⇐⇒ IN(φ) = ω.

Proof: Compactness.

Corollary

φ is NIP ⇐⇒ IN(φ) < ω ⇐⇒ VC(φ) < ω.
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NIP and vcT

Let T be a complete L-theory.

Definition

We say T is NIP iff: every partitioned L-formula is NIP.

Fact: It is sufficient to check all φ(x , y) with |x | = 1.

Definition

The VC density of T is the function

vcT : ω −→ R≥0 ∪ {∞}

defined by

vcT (n) = sup{vc(φ) : φ(x , y) ∈ L, |y | = n}
= sup{vc∗(φ) : φ(x , y) ∈ L, |x | = n}.
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NIP and vcT

Lemma

If vcT (n) <∞ for all n < ω, then T is NIP.

Note: Converse is not true in general; e.g., consider T eq where T is NIP.

Open Questions:

1 For every language L and every complete L-theory T , does
vcT (1) <∞ imply vcT (n) <∞ for all n < ω?

2 If so, is there some bounding function β, independent of L and T ,
such that vcT (n) < β(vcT (1), n)?
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Finite Types

Let ∆(x , y) be a finite set of L-formulae (with free variables x and y).

Definition

The set system generated by ∆ is

S∆ =
{
φ
(
M |x |, b

)
: φ(x , y) ∈ ∆, b ∈ M |y |

}
.

The dual shatter function of ∆ is

π∗∆(n) = max
{
|S∆(B)| : B ∈

[
M |y |

]n}
.

The dual VC density of ∆ is

vc∗∆(n) = inf{r ∈ R>0 : π∗∆(n) = O(nr )}.

Fact: π∗∆ and vc∗∆ are elementary.
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Defining Schemata

Let ∆(x , y) ⊆ L and B ⊆ M |y | both be finite. Let p ∈ S∆(B).

Definition

Given a schema
d(y , z) = {dφ(y , z) : φ ∈ ∆} ⊆ L

and a parameter c ∈ M |z|, we say that d(y , c) defines p iff:
for every φ ∈ ∆ and b ∈ B, we have

φ(x , b) ∈ p ⇐⇒ M |= dφ(b, c).
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UDTFS

Let ∆(x , y) ⊆ L be finite.

Definition

We say ∆ has uniform definability of types over finite sets (UDTFS) with
n parameters iff: there is a finite family F of schemata each of the form

d(y , z1, ..., zn) = {dφ(y , z1, ..., zn) : φ ∈ ∆}

with |y | = |z1| = · · · = |zn| such that if B ⊆ M |y | is finite and
p(x) ∈ S∆(B), then for some d ∈ F and b1, ..., bn ∈ B, d(y , b) defines p.

Fact: This property is elementary.

Definition

If T is an L-theory, we say ∆ has UDTFS in T with n parameters iff:
∆ has UDTFS with n parameters for all models of T .
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Finite Breadth =⇒ UDTFS

Let ∆(x , y) ⊆ L be finite.

Lemma (5.2)

If breadth(S∆) = n < ω, then ∆ has UDTFS with n parameters.

Proof: For each φ ∈ ∆, let d0
φ(y , z1, ..., zn) be y 6= y .

For each φ ∈ ∆ and each δ ∈ ∆n, let dδφ(y , z1, ..., zn) be

∀x

[
n∧

i=1

δi (x , zi ) −→ φ(x , y)

]
.

We claim that the family
{
d0, dδ : δ ∈ ∆n

}
uniformly defines ∆-types

over finite sets.
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Proof of Claim:

Let B ⊆ M |y | be finite, and let p(x) ∈ S∆(B).

If ∀φ ∈ ∆ ∀b ∈ B φ(x , b) /∈ p : d0 defines p.

Otherwise:
Let p�∆ (x) = {φ(x , b) ∈ p : φ ∈ ∆}. Since breadth(S∆) = n, there
are δ1(x , c1), ..., δn(x , cn) ∈ p�∆ such that

p(M) ⊆ p�∆ (M) =
⋂

φ(x ,b)∈ p�∆

φ(M, b) =
n⋂

i=1

δi (M, ci ).

For all φ ∈ ∆ and b ∈ B, we have

φ(x , b) ∈ p ⇐⇒
⋂
δi (M, ci ) ⊆ φ(M, b) ⇐⇒ M |= dδφ(b, c).

So dδ(y , c) defines p.
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The VC n Property

Definition

An L-structure has the VC n property iff:
all finite ∆(x , y) ⊆ L with |x | = 1 have UDTFS with n parameters.

Fact: VC n is an elementary property.

Definition

An L-theory has the VC n property iff:
all of its models have VC n.

Next goal...

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.
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Let T be an L-theory, and let ∆(x , y),Ψ(x , y) ⊆ L both finite.

Lemma (5.5)

If every formula in ∆ is T -equivalent to a boolean combination of
formulae from Ψ and Ψ has UDTFS in T with n parameters, then ∆ has
UDTFS in T with n parameters.

Proof: Let t = |Ψ| and s = 2t . Let (ψj : j < t) enumerate Ψ.
For each φ ∈ ∆, there exists σ ∈ s×t2 such that

T ` φ(x , y)←→
∨
i<s

∧
j<t

ψ
σ(i , j)
j (x , y).

Let F witness that Ψ has UDTFS with n parameters.
For each d ∈ F and φ ∈ ∆, let dφ be∨

i<s

∧
j<t

d
σ(i , j)
ψj

(y , z1, ...zn).

It follows that {{dφ : φ ∈ ∆} : d ∈ F} witnesses that ∆ has UDTFS with
n parameters.
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Weakly O-Minimal Theories are VC 1

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.

Proof: Let M |= T , and let ∆(x , y) ⊆ L be finite with |x | = 1.

By Compactness, there exists n < ω such that for all φ ∈ ∆ and b ∈ M |y |,

φ(M, b) has at most n maximal convex components.

For all φ ∈ ∆ and i < n, there exists φi (x , y) ∈ L such that for each
b ∈ M |y |,

φi (M, b) is the i thcomponent of φ(M, b).

It follows that
M |= φ(x , y) ↔

∨
i<n

φi (x , y).
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Proof of Theorem (cont.)

For each φ ∈ ∆ and i < n, let

φ≤i (x , y) be ∃x0 [φi (x0, y) ∧ x ≤ x0]

φ<i (x , y) be ∀x0 [φi (x0, y) → x < x0].

It follows that

M |= φi (x , y) ↔ φ≤i (x , y) ∧ ¬φ<i (x , y).

If we let Ψ = {φ<i , φ
≤
i : φ ∈ ∆, i < n}, each formula in ∆ is

T -equivalent to a boolean combination of 2n formulae in Ψ.

For each ψ ∈ Ψ and b ∈ M |y |, notice that ψ(M, b) is an initial segment of
M, so SΨ is directed.

Lemma 5.2 ⇒ Ψ has UDTFS with one parameter.

Lemma 5.5 ⇒ ∆ has UDTFS with one parameter.
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Uniform Bounds on VC Density

Theorem (5.7)

If M has the VC n property, then every finite ∆(x , y) ⊆ L has UDTFS
with n|x | parameters.

Corollary (5.8a)

If M has the VC n property, then for every finite ∆(x , y) ⊆ L, we have
vc∗(∆) ≤ n|x |.

Proof: Given ∆(x , y) finite, there exists finite F witnessing UDTFS with
n|x | parameters. It follows that |S∆(B)| ≤ |F||B|n|x |.

Corollary (5.8b)

If T is complete and has the VC n property, then for all m < ω, we have
vcT (m) ≤ nm.
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Uniform Bounds on VC Density

Recall...

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.

It follows that...

Corollary (6.1a)

If T is complete and weakly o-minimal and ∆(x , y) ⊆ L is finite, then
vc∗(∆) ≤ |x |.

Corollary (6.1b)

If T is complete and weakly o-minimal, then vcT (n) ≤ n for all n < ω.
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Application: RCVF

Let L = {+ ,− , · , 0 , 1 , < , |}.

RCVF (with a proper convex valuation ring) where | is the divisibility
predicate (i.e., a|b ⇔ v(a) ≤ v(b)) is a complete L-theory.

Cherlin and Dickmann showed RCVF has quantifier elimination and is,
therefore, weakly o-minimal.

Corollary (6.2a)

In RCVF, if ∆(x , y) ⊆ L is finite, then vc∗(∆) ≤ |x |.

Corollary (6.2b)

vcRCVF(n) ≤ n for all n < ω.
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Application: ACVF(0,0)

Let L = {+ ,− , · , 0 , 1 , |}.

ACVF(0,0) where | is the divisibility predicate is complete in L.

Let R |= RCVF (in L ∪ {<}).

Consider R(i) where i2 = −1 and

a + bi | c + di ⇔ a2 + b2 | c2 + d2.

It follows that R(i) |= ACVF(0,0) and is interpretable in R.

Corollary (6.3a)

In ACVF(0,0), if ∆(x , y) ⊆ L is finite, then vc∗(∆) ≤ 2|x |.

Corollary (6.3b)

vcACVF(0,0)(n) ≤ 2n, for all n < ω.
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Counting Types
Let L be a language, M an L-structure, φ(x , y) ∈ L with |x | = 1, and
B ⊆ M |y |.
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Open Questions

1 For every language L and every complete L-theory T , does
vcT (1) <∞ imply vcT (n) <∞ for all n < ω?

RCVF : Yes ACVF(0,p) : ?

ACVF(0,0) : Yes ACVF(p,p) : ?

2 If so, is there some bounding function β, independent of L and T ,
such that vcT (n) < β(vcT (1), n)?

RCVF : β(n) = n ACVF(0,p) : ?

ACVF(0,0) : β(n) = 2n ACVF(p,p) : ?

3 Is it possible for vc(φ) to be irrational?
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