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Set Systems

Definition
Let X be a set and S C P(X). We call the pair (X,S) a set system.
Definition
Given A C X, define
SNA={BnA:BeS}
We say A is shattered by S iff: SN A =P(A).
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The Shatter Function and VC Dimension

Definition
The function 7g : w — w given by

s(n) = max{|SNA|: A e [X]"}
is called the shatter function of S.

Definition
The Vapnik-Chervonenkis (VC) dimension of S is

VC(S) = sup{n < w : S shatters some A € [X]"}
=sup{n < w:ms(n) =2"}.
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Example: X =R, S = Half-Spaces

VC(S) > 2:
< } . . L
L | O ) . >
< o o— >
< ° —o >
VC(S) < 3:
« o O o »
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Example: X = R?, S = Half-Spaces

VC(S) >3

VC(S) < 4:
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VC Density and the Sauer-Shelah Lemma
Definition
The VC density of S is

VC(S) = inf {r € R>O : 7T8(n) = O(nr)} = IimSUp |Og 7'('(’7).
nsw logn

Lemma (Sauer-Shelah)
If VC(S) = d < w, then for all n > d, we have

rs(n) < (g) +ot (Z) = O(n9).

Corollary
ve(S) < VC(S).
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Example: When S is “uniform,” VC dimension and VC
density agree.

Let X be an infinite set and S = [X]=9 for some d < w.

We have

SO
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Example: VC dimension is more susceptible to local
anomalies than VC density.

Let X =w,m <w, and § = P(m).

It follows that
2" if n<m
Ts(n) =

2m otherwise.
So
VC(S) =m
and
ve(S) = limsup log 2" _

n—w logn
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The Dual Shatter Function

Definition

Given Ay, ..., A, C X, let S(Aq, ..., A,) denote the set of nonempty atoms

in the Boolean algebra generated by Aj, ..., A,. That is

n
S(Ar, - Ay) = {ﬂA‘,’(’) o "2} \ o
i=1
where A} = A; and A? =X\ A.

Definition

The function 75 : w — w given by
m5(n) = max{|S(A1, ..., An)| : A1,...A, € S}
is called the dual shatter function of S.
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Independence Dimension and Dual VC Density

Definition
The independence dimension (a.k.a. dual VC dimension) of S is

IN(S) = VC*(S) =sup{n < w:mg(n) =2"}.

Definition
The dual VC density of S is
ve*(S) =inf {r e R>0: 7%(n) = o(n")}.
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Example: X =R, & = Half-Spaces
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Example: X = R?, S = Half-Spaces
INGS) > 2
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Example: X = R?, S = Half-Spaces

IN(S) < 3:
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Breadth and Directed Systems

Definition

Suppose there is a t < w such that for all n > t, if A € [S]” and

(A # @, then there is a subfamily B € [A]* such that (A =(B. We
call the least such t the breadth of S and denote it as breadth(S).

Definition
We call S directed iff: breadth(S) = 1.

Example: Let (K, T, v) be a valued field.
The set system (X, S) where X = K and

S={B,a):aeK,yeT}U{B,(a):ae K,yeT}

is directed.
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Independence Dimension is Bounded by Breadth

Lemma
IN(S) < breadth(S).

Proof: Suppose 0 < n = IN(S) < w.

There exists A € [S]” such that S(A) = 2".

It follows that ().A # @.

Let A € A, B= A\ Ap.

Since (X \ Ao) N (NB) # 9, we have A #(B.
It follows that breadth(S) > n — 1.
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Set Systems in a Model-Theoretic Context
Consider a sorted language £ with sorts indexed by /.
Let M be an L-structure with domains (M; : i € /).
Definition

Given an L-formula ¢(x, y) where x = (x{l, .y x5)and y = (yljl, ...,ytj*),
define

Sy ={9(X,b): be Y}
where X = M x --- x M and Y = M, x --- x M.

It follows that (X,S,) is a set system. To ease notation, we let:

Ty denote 7s,, VC(¢) denote VC(Sy), and  vc(¢) denote ve(Sy).

Similarly, we use 7, for TS, VC*(¢) for VC*(Sy), and vc*(¢) for ve*(Sy).
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The dual shatter function of ¢ is really counting ¢-types.
By definition, we have 7} (n) = max {|S(¢(X, b) : b € B)|: B €[Y]"}.

Let B € [Y]". Recall that

S(¢(X,b): be B) = {ﬂ 7N (X, b) o € 52} \ @.

beB
There is a bijection
S(¢(X,b) : be B) — {tpy(a/B) : a € X} = 54(B)

given by
M #" (X, b) — {qb"(b)(x, b):be B}.

beB

It follows that
1S(¢(X,b) : b€ B)| =[Sy(B)|-
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The Dual of a Formula

Definition
We call a formula ¢(x; y) a partitioned formula with object variable(s)
x = (x1, ..., Xs) and parameter variable(s) y = (y1, ..., yt)-

Definition

We let ¢*(y; x) denote the dual of ¢(x;y), meaning ¢*(y; x) is ¢(x;y)
but we view y as the object and x as the parameter.

It follows that
Sp = {6"(Y,a): 2 € X}
={¢(a,Y):ae X}.
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The shatter function of ¢* is also counting ¢-types.

By definition, we have 74+(n) = max {|Sg- N B| : B € [Y]"}.

Let B € [Y]". It follows that
Sp» NB={¢"(B,a):ac X}
={¢(a,B):a e X}
There is a bijection
{9(a,B) : 2 € X} —> {tpy(a/B) : 2 € X} = S,(B)
given by
#(a, B) — tpy(a/B).

It follows that
S+ N B| = |S4(B)].
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Duality in a Model-Theoretic Context

Lemma

The dual shatter function of ¢ is the shatter function of ¢*.
That is T3, = me~.

Proof: For all n < w, we have
W;(n) = max{|S(¢(X,b): be B)|: Be[Y]"}
— max{|S,(B)| : B € [V]"}
=max{|Sg- N B|: B € [Y]"}
= mg+(n).

Corollary

VC*(¢) = VC(¢7) and vc*(¢) = ve(¢").
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VC(¢) < w <= VC'(¢) <w

Lemma

VC(¢) < 2VC @)+,

Proof: Suppose VC(¢) > 2", there exists A € [X]?" shattered by Sy.
Let {a, : J C n} enumerate A.

For all i < n, let b; € Y such that M = ¢(ay, b)) < i€ J.

Let B = {b;j:i < n}.

It follows that Sy- shatters B, so VC(¢*) > n.

Corollary

VC*(¢) < 2VC@)+1,

Corollary
VC(¢) < w <= VC*(¢) < w.
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Duality in the Classical Context

Given (X, S) a set system, let M = (X,S,€), and ¢(x,y) be x € y.
It follows that S = Sy, so by definition, ms = 7 and w5 = 7j.
Let X* =S and
S*={{BeS:aeB}:ac X}
={¢*(S,a) : a € X}.
It follows that §* = Sy«, so by definition, s+ = my+ and 5. = 77(’;*.
Definition

We call (X*,S8*) the dual of (X,S).

Lemma

T = msx and Tg. = Ts.

Proof: mg=m) =mp =7+ and 75 =75 =my = Ts.
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Duality in the Classical Context

Corollary
VC*(S) = VC(S*) and vc*(S) = ve(S*).

Corollary
For any set system (X,S), we have

VC(S) < 2VC*(S)+1
and

VCH(S) < 2VeE+L

Corollary
VC(S)<w <<= VC'(S)<w.
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Recap: Set Systems in a Model Theoretic Context
Let £ be a language, M an L-structure, and ¢(x,y) € L.
Sy = {¢ (M|X|,b) be Mlyl}

mg(n) = max {|S¢ NAl:Ae [M'an}

— max {|S¢*(A)| Ac [Mlxl]"}
VC(¢) =sup{n <w:my(n) =2"}

ve(¢) =inf{r e R>0 : 7y(n) = o(n")}
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Recap: Duality in a Model Theoretic Context

S(A1,---, Ay = {ﬂA;’(") o€ "2} \ @
i=1

my(n) = max {|S(A1, ..., Ap)| : A1, ..., An € Sy}
= max{|5¢(B)| :Be [M'y‘]n}

IN(¢) = VC*(¢) = sup {n <w : mj(n) =2"}
vc*(¢) =inf {r e RO : my(n) = O(n")}
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Elementary Properties

Lemma
TF; is elementary (i.e., elementary equivalent L-structures agree on 71’2; ).

Proof: Given n < w, let o € P(M2. Consider the £-sentence

n a(J)
3yt yn N\ [3X /\@b[ieJ](X,Yi)] :

JCn i=1

Corollary
VC*(¢) and vc*(¢) are elementary.

Corollary
VC(¢) and vc(¢) are elementary.
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NIP Formulae

Let T be a complete L-theory, and let ¢(x,y) € L.

Definition
We say ¢ has the independence property (IP) iff: for some M |= T, there
exists sequences (ay : J C w) € MX and (b; : i < w) € MW such that

M}=¢(8J,b,’) ~— i€
If ¢ is not IP, we say ¢ is NIP.
Lemma
¢pislP < IN(¢)=w.
Proof: Compactness.

Corollary
¢is NIP <= IN(¢p)<w <<= V((¢)<w.
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NIP and vc”

Let T be a complete L-theory.
Definition
We say T is NIP iff: every partitioned L-formula is NIP.
Fact: It is sufficient to check all ¢(x, y) with |x| = 1.
Definition
The VC density of T is the function

vel 1w — RZ0U {00}
defined by

ve' (n) = sup{ve(¢) - ¢(x,y) € L, |y| = n}
= sup{vc*(¢) : ¢(x,y) € L,|x| = n}.
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NIP and vc”

Lemma

IfveT (n) < oo for all n < w, then T is NIP.
Note: Converse is not true in general; e.g., consider T¢% where T is NIP.
Open Questions:

1 For every language £ and every complete L-theory T, does
veT(1) < oo imply veT (n) < oo for all n < w?

2 If so, is there some bounding function /3, independent of £ and T,
such that v (n) < B(ve' (1), n)?
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Finite Types

Let A(x, y) be a finite set of L-formulae (with free variables x and y).
Definition

The set system generated by A is
S = {¢ <M|X|, b) L d(x,y) €A, be Mlyl}.
The dual shatter function of A is
wh(n) = max{\SA(B)| Be [MM] }
The dual VC density of A is
vea(n) = inf{r e R : 7i(n) = O(n")}.

Fact: w3 and vcj are elementary.
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Defining Schemata

Let A(x,y) C £ and B € M| both be finite. Let p € Sp(B).
Definition
Given a schema

d(y,z) ={dg(y,2) : ¢ € A} C L

and a parameter ¢ € MI?l, we say that d(y, c) defines p iff:
for every ¢ € A and b € B, we have

d(x,b)€p < M E dy(b,c).
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UDTFS

Let A(x,y) C L be finite.

Definition
We say A has uniform definability of types over finite sets (UDTFS) with
n parameters iff: there is a finite family F of schemata each of the form

d(y,z1,...,zn) = {dp(y, 21, ..., Zn) : ¢ € A}

with |y| = |z1| = - - - = |z, such that if B € M| is finite and
p(x) € Sa(B), then for some d € F and by, ..., b, € B, d(y, b) defines p.

Fact: This property is elementary.

Definition
If T is an L-theory, we say A has UDTFS in T with n parameters iff:
A has UDTFS with n parameters for all models of T.
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Finite Breadth = UDTFS

Let A(x,y) C L be finite.
Lemma (5.2)
If breadth(Sa) = n < w, then A has UDTFS with n parameters.

Proof: For each ¢ € A, let d3(y,z1,...,2,) be y # y.

For each ¢ € A and each § € A", let dg(y,zl,...,z,,) be

Vx [/\ di(x,z)) — ¢(X7Y)] :

i=1

We claim that the family {do, d:5¢ A"} uniformly defines A-types
over finite sets.
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Proof of Claim:

Let B C M| be finite, and let p(x) € Sa(B).
If Vo A Ybe B o(x,b)¢p:
Otherwise:

Let pla (x) = {o(x,b) € p: ¢ € A}. Since breadth(Sa) = n, there
are 01(x, ¢1), ..., 0n(X, cn) € pla such that

d® defines p.

p(M) C pla (M) = [ ¢(M,b) = ()6i(M,c).
¢(x,b) € pla i=1
For all ¢ € A and b € B, we have
$(x,b) € p <= ()0i(M,c;) C 6(M,b) <= M = di(b,c).
So dg(y,f) defines p.
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The VC n Property

Definition
An L-structure has the VC n property iff:
all finite A(x,y) € £ with |x| =1 have UDTFS with n parameters.

Fact: VC n is an elementary property.

Definition
An L-theory has the VC n property iff:
all of its models have VC n.

Next goal...

Theorem (6.1)
If T is complete and weakly o-minimal, then T has the VC 1 property.
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Let T be an L-theory, and let A(x,y), V(x,y) C L both finite.
Lemma (5.5)

If every formula in A is T-equivalent to a boolean combination of
formulae from W and W has UDTFS in T with n parameters, then A has
UDTFS in T with n parameters.

Proof: Let t = |V| and s = 2f. Let (¢j : j < t) enumerate V.
For each ¢ € A, there exists o € **'2 such that

T Fo(xy) e\ N\ o7 xy).
i<s j<t
Let F witness that W has UDTFS with n parameters.
For each d € F and ¢ € A, let dy be

\/ /\ dZJ_('7J)(y,zl, Zp).

i<s j<t
It follows that {{d; : ¢ € A} : d € F} witnesses that A has UDTFS with
n parameters.
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Weakly O-Minimal Theories are VC 1

Theorem (6.1)
If T is complete and weakly o-minimal, then T has the VC 1 property.

Proof: Let M |= T, and let A(x,y) C L be finite with |x| = 1.
By Compactness, there exists n < w such that for all ¢ € A and b € MV!,
®(M, b) has at most n maximal convex components.

For all ¢ € A and i < n, there exists ¢;(x, y) € L such that for each
be MW,

$i(M, b) is the ithcomponent of ¢(M, b).

It follows that

ME é(x,y) < \/ oi(x,y).

i<n
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Proof of Theorem (cont.)

For each ¢ € A and i < n, let
¢7(x,y) be Ixo[di(x0,¥) N x < x]
o7 (x,y) be Vxolgi(x0,y) — x < xo).
It follows that
MEdilx,y) & 7(x,y) A =67 (x,y).

If we let W = {¢~, ¢ : ¢ €A, i< n}, each formula in A is
T-equivalent to a boolean combination of 2n formulae in W.

For each 1) € W and b € MW, notice that 1/(M, b) is an initial segment of
M, so Sy is directed.

Lemma 5.2 = W has UDTFS with one parameter.

Lemma 5.5 = A has UDTFS with one parameter.
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Uniform Bounds on VC Density

Theorem (5.7)

If M has the VC n property, then every finite A(x,y) C L has UDTFS
with n|x| parameters.

Corollary (5.8a)

If M has the VC n property, then for every finite A(x,y) C L, we have
vc*(A) < n|x|.

Proof: Given A(x, y) finite, there exists finite F witnessing UDTFS with
n|x| parameters. It follows that |Sa(B)| < |F||B|"X.

Corollary (5.8b)

If T is complete and has the VVC n property, then for all m < w, we have
veT(m) < nm.
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Uniform Bounds on VC Density

Recall...

Theorem (6.1)
If T is complete and weakly o-minimal, then T has the VC 1 property.

It follows that...

Corollary (6.1a)

If T is complete and weakly o-minimal and A(x,y) C L is finite, then
ve*(A) < |x].

Corollary (6.1b)

If T is complete and weakly o-minimal, then vc™ (n) < n for all n < w.
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Application: RCVF

Let L={+,—,-,0,1,<,]|}.

RCVF (with a proper convex valuation ring) where | is the divisibility
predicate (i.e., alb < v(a) < v(b)) is a complete L-theory.

Cherlin and Dickmann showed RCVF has quantifier elimination and is,
therefore, weakly o-minimal.

Corollary (6.2a)
In RCVF, if A(x,y) C L is finite, then vc*(A) < |x|.

Corollary (6.2b)

veRVF(n) < n for all n < w.
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Application: ACVF g )

Let £={+,—,-,0,1,]}.
ACVF g0y where | is the divisibility predicate is complete in L.
Let R = RCVF (in LU {<}).
Consider R(i) where i = —1 and
a+bilct+di & a°+b*|c?+d°
It follows that R(i) = ACVF gy and is interpretable in R.

Corollary (6.3a)
In ACVF 0,0y, if A(x,y) C L is finite, then vc*(A) < 2|x|.

Corollary (6.3b)

veAVFo0 (n) < 2n, for all n < w.
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Counting Types

B C MWI.

Let £ be a language, M an L-structure, ¢(x, y) € L with |x| =1, and

n n
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on (0) T (d> ")
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Open Questions

1 For every language £ and every complete L-theory T, does
c(1) < oo imply ve'(n) < oo for all n < w?

RCVF : Yes  ACVF(p): ?

ACVF(O’O) : Yes ACVF(EP) D ?

2 If so, is there some bounding function (3, independent of £ and T,
such that ve (n) < B(ve' (1), n)?

RCVF : B(n)=n ACVF@gp) @ ?

ACVF (0 0) B(n) =2n ACVF(MP) 27

3 Is it possible for vc(¢) to be irrational?
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We summarize the implications between the properties of a theory T discussed above
in the following diagram:

VC1=—==VCd for some d > 0
!
ve? (1) = 1 =———> ve-minimal ———3 dp-minimal = UDTFS — NIP
!
VC-minimal

Here the arrows marked with an exclamation mark are known not to be reversible.

A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S.
Starchenko, Vapnik-Chervonenkis density in some theories without the
independence property, I, Trans. Amer. Math. Soc. 368 (2016),
5889-5949.
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