VC Dimension, VC Density, and an Application to Algebraically Closed Valued Fields

Roland Walker

University of Illinois at Chicago
2016

Counting Types

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L}-structure, $\phi(x, y) \in \mathcal{L}$ with $|x|=1$, and $B \subseteq M^{|y|}$.

References

A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949.
V. Guingona, On VC-density in VC-minimal theories, arXiv:1409.8060 [math.LO].
P. Simon, A Guide to NIP Theories, Cambridge University Press (2015).

Set Systems

Definition

Let X be a set and $\mathcal{S} \subseteq \mathcal{P}(X)$. We call the pair (X, \mathcal{S}) a set system.

Definition

Given $A \subseteq X$, define

$$
\mathcal{S} \cap A=\{B \cap A: B \in \mathcal{S}\} .
$$

We say A is shattered by \mathcal{S} iff: $\mathcal{S} \cap A=\mathcal{P}(A)$.

The Shatter Function and VC Dimension

Definition

The function $\pi_{\mathcal{S}}: \omega \rightarrow \omega$ given by

$$
\pi_{\mathcal{S}}(n)=\max \left\{|\mathcal{S} \cap A|: A \in[X]^{n}\right\}
$$

is called the shatter function of \mathcal{S}.

Definition

The Vapnik-Chervonenkis (VC) dimension of \mathcal{S} is

$$
\begin{aligned}
\mathrm{VC}(\mathcal{S}) & =\sup \left\{n<\omega: \mathcal{S} \text { shatters some } A \in[X]^{n}\right\} \\
& =\sup \left\{n<\omega: \pi_{\mathcal{S}}(n)=2^{n}\right\}
\end{aligned}
$$

Example: $X=\mathbb{R}, \mathcal{S}=$ Half-Spaces

$\mathrm{VC}(\mathcal{S}) \geq 2$:

$\operatorname{VC}(\mathcal{S})<3:$

Example: $X=\mathbb{R}^{2}, \mathcal{S}=$ Half-Spaces

$\mathrm{VC}(\mathcal{S}) \geq 3:$

$\mathrm{VC}(\mathcal{S})<4:$

VC Density and the Sauer-Shelah Lemma

Definition

The VC density of \mathcal{S} is

$$
\operatorname{vc}(\mathcal{S})=\inf \left\{r \in \mathbb{R}^{>0}: \pi_{\mathcal{S}}(n)=O\left(n^{r}\right)\right\}=\underset{n \rightarrow \omega}{\limsup } \frac{\log \pi(n)}{\log n} .
$$

Lemma (Sauer-Shelah)
If $\operatorname{VC}(\mathcal{S})=d<\omega$, then for all $n \geq d$, we have

$$
\pi_{\mathcal{S}}(n) \leq\binom{ n}{0}+\cdots+\binom{n}{d}=O\left(n^{d}\right) .
$$

Corollary

$\mathrm{vc}(\mathcal{S}) \leq \mathrm{VC}(\mathcal{S})$.

Example: When \mathcal{S} is "uniform," VC dimension and VC density agree.

Let X be an infinite set and $\mathcal{S}=[X]^{\leq d}$ for some $d<\omega$.

We have

SO

$$
\pi_{\mathcal{S}}(n)=\binom{n}{0}+\cdots+\binom{n}{d}
$$

$$
\operatorname{VC}(\mathcal{S})=\operatorname{vc}(\mathcal{S})=d
$$

Example: VC dimension is more susceptible to local anomalies than VC density.

Let $X=\omega, m<\omega$, and $\mathcal{S}=\mathcal{P}(m)$.
It follows that

$$
\pi_{\mathcal{S}}(n)= \begin{cases}2^{n} & \text { if } n \leq m \\ 2^{m} & \text { otherwise }\end{cases}
$$

So

$$
\operatorname{VC}(\mathcal{S})=m
$$

and

$$
\mathrm{vc}(\mathcal{S})=\limsup _{n \rightarrow \omega} \frac{\log 2^{m}}{\log n}=0
$$

The Dual Shatter Function

Definition

Given $A_{1}, \ldots, A_{n} \subseteq X$, let $S\left(A_{1}, \ldots, A_{n}\right)$ denote the set of nonempty atoms in the Boolean algebra generated by A_{1}, \ldots, A_{n}. That is

$$
S\left(A_{1}, \cdots, A_{n}\right)=\left\{\bigcap_{i=1}^{n} A_{i}^{\sigma(i)}: \sigma \in{ }^{n} 2\right\} \backslash \varnothing
$$

where $A_{i}^{1}=A_{i}$ and $A_{i}^{0}=X \backslash A_{i}$.

Definition

The function $\pi_{\mathcal{S}}^{*}: \omega \rightarrow \omega$ given by

$$
\pi_{\mathcal{S}}^{*}(n)=\max \left\{\left|S\left(A_{1}, \ldots, A_{n}\right)\right|: A_{1}, \ldots A_{n} \in \mathcal{S}\right\}
$$

is called the dual shatter function of \mathcal{S}.

Independence Dimension and Dual VC Density

Definition

The independence dimension (a.k.a. dual VC dimension) of \mathcal{S} is

$$
\operatorname{IN}(\mathcal{S})=\mathrm{VC}^{*}(\mathcal{S})=\sup \left\{n<\omega: \pi_{\mathcal{S}}^{*}(n)=2^{n}\right\} .
$$

Definition

The dual VC density of \mathcal{S} is

$$
\operatorname{vc}^{*}(\mathcal{S})=\inf \left\{r \in \mathbb{R}^{>0}: \pi_{\mathcal{S}}^{*}(n)=O\left(n^{r}\right)\right\} .
$$

Example: $X=\mathbb{R}, \mathcal{S}=$ Half-Spaces

$\operatorname{IN}(\mathcal{S}) \geq 1:$

$\operatorname{IN}(\mathcal{S})<2$:

Example: $X=\mathbb{R}^{2}, \mathcal{S}=$ Half-Spaces

$\operatorname{IN}(\mathcal{S}) \geq 2:$

Example: $X=\mathbb{R}^{2}, \mathcal{S}=$ Half-Spaces

$\operatorname{IN}(\mathcal{S})<3:$

Breadth and Directed Systems

Definition

Suppose there is a $t<\omega$ such that for all $n>t$, if $\mathcal{A} \in[\mathcal{S}]^{n}$ and $\bigcap \mathcal{A} \neq \varnothing$, then there is a subfamily $\mathcal{B} \in[\mathcal{A}]^{t}$ such that $\bigcap \mathcal{A}=\bigcap \mathcal{B}$. We call the least such t the breadth of \mathcal{S} and denote it as $\operatorname{breadth}(\mathcal{S})$.

Definition

We call \mathcal{S} directed iff: $\operatorname{breadth}(\mathcal{S})=1$.

Example: Let (K, Γ, v) be a valued field.
The set system (X, \mathcal{S}) where $X=K$ and

$$
\mathcal{S}=\left\{B_{\gamma}(a): a \in K, \gamma \in \Gamma\right\} \cup\left\{\bar{B}_{\gamma}(a): a \in K, \gamma \in \Gamma\right\}
$$

is directed.

Independence Dimension is Bounded by Breadth

Lemma

$\operatorname{IN}(\mathcal{S}) \leq \operatorname{breadth}(\mathcal{S})$.

Proof: Suppose $0<n=\operatorname{IN}(\mathcal{S})<\omega$.
There exists $\mathcal{A} \in[\mathcal{S}]^{n}$ such that $S(\mathcal{A})=2^{n}$.
It follows that $\bigcap \mathcal{A} \neq \varnothing$.
Let $A_{0} \in \mathcal{A}, \mathcal{B}=\mathcal{A} \backslash A_{0}$.
Since $\left(X \backslash A_{0}\right) \cap(\bigcap \mathcal{B}) \neq \varnothing$, we have $\bigcap \mathcal{A} \neq \bigcap \mathcal{B}$.
It follows that $\operatorname{breadth}(\mathcal{S})>n-1$.

Set Systems in a Model-Theoretic Context

Consider a sorted language \mathcal{L} with sorts indexed by l.
Let \mathcal{M} be an \mathcal{L}-structure with domains $\left(M_{i}: i \in I\right)$.

Definition

Given an \mathcal{L}-formula $\phi(x, y)$ where $x=\left(x_{1}^{i_{1}}, \ldots, x_{s}^{i_{s}}\right)$ and $y=\left(y_{1}^{j_{1}}, \ldots, y_{t}^{j_{t}}\right)$, define

$$
\mathcal{S}_{\phi}=\{\phi(X, b): b \in Y\}
$$

where $X=M_{i_{1}} \times \cdots \times M_{i_{s}}$ and $Y=M_{j_{1}} \times \cdots \times M_{j_{t}}$.
It follows that $\left(X, \mathcal{S}_{\phi}\right)$ is a set system. To ease notation, we let:
π_{ϕ} denote $\pi_{\mathcal{S}_{\phi}}, \quad V C(\phi)$ denote $\operatorname{VC}\left(\mathcal{S}_{\phi}\right), \quad$ and $\quad v c(\phi)$ denote $v c\left(\mathcal{S}_{\phi}\right)$.

Similarly, we use π_{ϕ}^{*} for $\pi_{\mathcal{S}_{\phi}}^{*}, \mathrm{VC}^{*}(\phi)$ for $\mathrm{VC}^{*}\left(\mathcal{S}_{\phi}\right)$, and $\mathrm{vc}^{*}(\phi)$ for $\mathrm{vc}^{*}\left(\mathcal{S}_{\phi}\right)$.

The dual shatter function of ϕ is really counting ϕ-types.
By definition, we have $\pi_{\phi}^{*}(n)=\max \left\{|S(\phi(X, b): b \in B)|: B \in[Y]^{n}\right\}$.
Let $B \in[Y]^{n}$. Recall that

$$
S(\phi(X, b): b \in B)=\left\{\bigcap_{b \in B} \phi^{\sigma(b)}(X, b): \sigma \in{ }^{B} 2\right\} \backslash \varnothing .
$$

There is a bijection

$$
S(\phi(X, b): b \in B) \longrightarrow\left\{\operatorname{tp}_{\phi}(a / B): a \in X\right\}=S_{\phi}(B)
$$

given by

$$
\bigcap_{b \in B} \phi^{\sigma(b)}(X, b) \longmapsto\left\{\phi^{\sigma(b)}(x, b): b \in B\right\} .
$$

It follows that

$$
|S(\phi(X, b): b \in B)|=\left|S_{\phi}(B)\right|
$$

The Dual of a Formula

Definition

We call a formula $\phi(x ; y)$ a partitioned formula with object variable(s) $x=\left(x_{1}, \ldots, x_{s}\right)$ and parameter variable(s) $y=\left(y_{1}, \ldots, y_{t}\right)$.

Definition

We let $\phi^{*}(y ; x)$ denote the dual of $\phi(x ; y)$, meaning $\phi^{*}(y ; x)$ is $\phi(x ; y)$ but we view y as the object and x as the parameter.

It follows that

$$
\begin{aligned}
\mathcal{S}_{\phi^{*}} & =\left\{\phi^{*}(Y, a): a \in X\right\} \\
& =\{\phi(a, Y): a \in X\} .
\end{aligned}
$$

The shatter function of ϕ^{*} is also counting ϕ-types.

By definition, we have $\pi_{\phi^{*}}(n)=\max \left\{\left|\mathcal{S}_{\phi^{*}} \cap B\right|: B \in[Y]^{n}\right\}$.
Let $B \in[Y]^{n}$. It follows that

$$
\begin{aligned}
\mathcal{S}_{\phi^{*}} \cap B & =\left\{\phi^{*}(B, a): a \in X\right\} \\
& =\{\phi(a, B): a \in X\}
\end{aligned}
$$

There is a bijection

$$
\{\phi(a, B): a \in X\} \longrightarrow\left\{\operatorname{tp}_{\phi}(a / B): a \in X\right\}=S_{\phi}(B)
$$

given by

$$
\phi(a, B) \longmapsto \operatorname{tp}_{\phi}(a / B) .
$$

It follows that

$$
\left|\mathcal{S}_{\phi^{*}} \cap B\right|=\left|S_{\phi}(B)\right| .
$$

Duality in a Model-Theoretic Context

Lemma

The dual shatter function of ϕ is the shatter function of ϕ^{*}.
That is $\pi_{\phi}^{*}=\pi_{\phi^{*}}$.
Proof: For all $n<\omega$, we have

$$
\begin{aligned}
\pi_{\phi}^{*}(n) & =\max \left\{|S(\phi(X, b): b \in B)|: B \in[Y]^{n}\right\} \\
& =\max \left\{\left|S_{\phi}(B)\right|: B \in[Y]^{n}\right\} \\
& =\max \left\{\left|\mathcal{S}_{\phi^{*}} \cap B\right|: B \in[Y]^{n}\right\} \\
& =\pi_{\phi^{*}}(n) .
\end{aligned}
$$

Corollary

$\mathrm{VC}^{*}(\phi)=\mathrm{VC}\left(\phi^{*}\right)$ and $\mathrm{vc}^{*}(\phi)=\mathrm{vc}\left(\phi^{*}\right)$.
$\mathrm{VC}(\phi)<\omega \Longleftrightarrow \mathrm{VC}^{*}(\phi)<\omega$

Lemma

$\mathrm{VC}(\phi)<2^{\mathrm{VC}^{*}(\phi)+1}$.
Proof: Suppose $\operatorname{VC}(\phi) \geq 2^{n}$, there exists $A \in[X]^{2^{n}}$ shattered by \mathcal{S}_{ϕ}.
Let $\left\{a_{J}: J \subseteq n\right\}$ enumerate A.
For all $i<n$, let $b_{i} \in Y$ such that $\mathcal{M} \models \phi\left(a_{J}, b_{i}\right) \Longleftrightarrow i \in J$.
Let $B=\left\{b_{i}: i<n\right\}$.
It follows that $\mathcal{S}_{\phi^{*}}$ shatters B, so $\operatorname{VC}\left(\phi^{*}\right) \geq n$.

Corollary

$\mathrm{VC}^{*}(\phi)<2^{\mathrm{VC}(\phi)+1}$.
Corollary
$\mathrm{VC}(\phi)<\omega \Longleftrightarrow \mathrm{VC}^{*}(\phi)<\omega$.

Duality in the Classical Context

Given (X, \mathcal{S}) a set system, let $\mathcal{M}=(X, \mathcal{S}, \in)$, and $\phi(x, y)$ be $x \in y$. It follows that $\mathcal{S}=\mathcal{S}_{\phi}$, so by definition, $\pi_{\mathcal{S}}=\pi_{\phi}$ and $\pi_{\mathcal{S}}^{*}=\pi_{\phi}^{*}$.
Let $X^{*}=\mathcal{S}$ and

$$
\begin{aligned}
\mathcal{S}^{*} & =\{\{B \in \mathcal{S}: a \in B\}: a \in X\} \\
& =\left\{\phi^{*}(\mathcal{S}, a): a \in X\right\} .
\end{aligned}
$$

It follows that $\mathcal{S}^{*}=\mathcal{S}_{\phi^{*}}$, so by definition, $\pi_{\mathcal{S}^{*}}=\pi_{\phi^{*}}$ and $\pi_{\mathcal{S}^{*}}^{*}=\pi_{\phi^{*}}^{*}$.

Definition

We call $\left(X^{*}, \mathcal{S}^{*}\right)$ the dual of (X, \mathcal{S}).

Lemma

$\pi_{\mathcal{S}}^{*}=\pi_{\mathcal{S}^{*}}$ and $\pi_{\mathcal{S}^{*}}^{*}=\pi_{\mathcal{S}}$.
Proof: $\quad \pi_{\mathcal{S}}^{*}=\pi_{\phi}^{*}=\pi_{\phi^{*}}=\pi_{\mathcal{S}^{*}} \quad$ and $\quad \pi_{\mathcal{S}^{*}}^{*}=\pi_{\phi^{*}}^{*}=\pi_{\phi}=\pi_{\mathcal{S}}$.

Duality in the Classical Context

Corollary
$\mathrm{VC}^{*}(\mathcal{S})=\operatorname{VC}\left(\mathcal{S}^{*}\right)$ and $\mathrm{vc}^{*}(\mathcal{S})=\operatorname{vc}\left(\mathcal{S}^{*}\right)$.

Corollary

For any set system (X, \mathcal{S}), we have

$$
\mathrm{VC}(\mathcal{S})<2^{\mathrm{VC}^{*}(\mathcal{S})+1}
$$

and

$$
\mathrm{VC}^{*}(\mathcal{S})<2^{\mathrm{VC}(\mathcal{S})+1}
$$

Corollary

$\mathrm{VC}(\mathcal{S})<\omega \quad \Longleftrightarrow \quad \mathrm{VC}^{*}(\mathcal{S})<\omega$.

References

A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949.
V. Guingona, On VC-density in VC-minimal theories, arXiv:1409.8060 [math.LO].
P. Simon, A Guide to NIP Theories, Cambridge University Press (2015).

Recap: Set Systems in a Model Theoretic Context

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L}-structure, and $\phi(x, y) \in \mathcal{L}$.

$$
\begin{aligned}
\mathcal{S}_{\phi} & =\left\{\phi\left(M^{|x|}, b\right): b \in M^{|y|}\right\} \\
\pi_{\phi}(n) & =\max \left\{\left|\mathcal{S}_{\phi} \cap A\right|: A \in\left[M^{|x|}\right]^{n}\right\} \\
& =\max \left\{\left|S_{\phi^{*}}(A)\right|: A \in\left[M^{|x|}\right]^{n}\right\} \\
\operatorname{VC}(\phi) & =\sup \left\{n<\omega: \pi_{\phi}(n)=2^{n}\right\} \\
\operatorname{vc}(\phi) & =\inf \left\{r \in \mathbb{R}^{>0}: \pi_{\phi}(n)=O\left(n^{r}\right)\right\}
\end{aligned}
$$

Recap: Duality in a Model Theoretic Context

$$
\begin{aligned}
S\left(A_{1}, \cdots, A_{n}\right) & =\left\{\bigcap_{i=1}^{n} A_{i}^{\sigma(i)}: \sigma \in n^{n} 2\right\} \backslash \varnothing \\
\pi_{\phi}^{*}(n) & =\max \left\{\left|S\left(A_{1}, \ldots, A_{n}\right)\right|: A_{1}, \ldots, A_{n} \in \mathcal{S}_{\phi}\right\} \\
& =\max \left\{\left|S_{\phi}(B)\right|: B \in\left[M^{|y|}\right]^{n}\right\}
\end{aligned}
$$

$$
\operatorname{IN}(\phi)=\mathrm{VC}^{*}(\phi)=\sup \left\{n<\omega: \pi_{\phi}^{*}(n)=2^{n}\right\}
$$

$$
\operatorname{vc}^{*}(\phi)=\inf \left\{r \in \mathbb{R}^{>0}: \pi_{\phi}^{*}(n)=O\left(n^{r}\right)\right\}
$$

Elementary Properties

Lemma

π_{ϕ}^{*} is elementary (i.e., elementary equivalent \mathcal{L}-structures agree on π_{ϕ}^{*}).
Proof: Given $n<\omega$, let $\sigma \in{ }^{\mathcal{P}(n)} 2$. Consider the \mathcal{L}-sentence

$$
\exists y_{1}, \ldots, y_{n} \bigwedge_{J \subseteq n}\left[\exists x \bigwedge_{i=1}^{n} \phi^{[i \in J]}\left(x, y_{i}\right)\right]^{\sigma(J)}
$$

Corollary

$\mathrm{VC}^{*}(\phi)$ and $\mathrm{vc}^{*}(\phi)$ are elementary.

Corollary

$\mathrm{VC}(\phi)$ and $\mathrm{vc}(\phi)$ are elementary.

NIP Formulae

Let T be a complete \mathcal{L}-theory, and let $\phi(x, y) \in \mathcal{L}$.

Definition

We say ϕ has the independence property (IP) iff: for some $\mathcal{M} \vDash T$, there exists sequences $\left(a_{J}: J \subseteq \omega\right) \subseteq M^{|x|}$ and $\left(b_{i}: i<\omega\right) \subseteq M^{|y|}$ such that

$$
\mathcal{M} \models \phi\left(a_{J}, b_{i}\right) \quad \Longleftrightarrow \quad i \in J .
$$

If ϕ is not IP, we say ϕ is NIP.
Lemma
ϕ is $I P \quad \Longleftrightarrow \quad \operatorname{IN}(\phi)=\omega$.
Proof: Compactness.
Corollary
ϕ is NIP $\Longleftrightarrow \mathrm{IN}(\phi)<\omega \quad \Longleftrightarrow \quad \mathrm{VC}(\phi)<\omega$.

NIP and vc^{T}

Let T be a complete \mathcal{L}-theory.

Definition

We say T is NIP iff: every partitioned \mathcal{L}-formula is NIP.
Fact: It is sufficient to check all $\phi(x, y)$ with $|x|=1$.

Definition

The VC density of T is the function

$$
\mathrm{vc}^{\top}: \omega \longrightarrow \mathbb{R}^{\geq 0} \cup\{\infty\}
$$

defined by

$$
\begin{aligned}
\mathrm{vc}^{T}(n) & =\sup \{\operatorname{vc}(\phi): \phi(x, y) \in \mathcal{L},|y|=n\} \\
& =\sup \left\{\operatorname{vc}^{*}(\phi): \phi(x, y) \in \mathcal{L},|x|=n\right\}
\end{aligned}
$$

NIP and vc^{T}

Lemma

If $\mathrm{vc}^{\top}(n)<\infty$ for all $n<\omega$, then T is NIP.
Note: Converse is not true in general; e.g., consider $T^{\text {eq }}$ where T is NIP.
Open Questions:
1 For every language \mathcal{L} and every complete \mathcal{L}-theory T, does $\mathrm{vc}^{\top}(1)<\infty$ imply $\mathrm{vc}^{\top}(n)<\infty$ for all $n<\omega$?

2 If so, is there some bounding function β, independent of \mathcal{L} and T, such that $\mathrm{vc}^{T}(n)<\beta\left(\mathrm{vc}^{T}(1), n\right)$?

Finite Types

Let $\Delta(x, y)$ be a finite set of \mathcal{L}-formulae (with free variables x and y).

Definition

The set system generated by Δ is

$$
\mathcal{S}_{\Delta}=\left\{\phi\left(M^{|x|}, b\right): \phi(x, y) \in \Delta, b \in M^{|y|}\right\} .
$$

The dual shatter function of Δ is

$$
\pi_{\Delta}^{*}(n)=\max \left\{\left|S_{\Delta}(B)\right|: B \in\left[M^{|y|}\right]^{n}\right\}
$$

The dual VC density of Δ is

$$
v c_{\Delta}^{*}(n)=\inf \left\{r \in \mathbb{R}^{>0}: \pi_{\Delta}^{*}(n)=O\left(n^{r}\right)\right\} .
$$

Fact: π_{Δ}^{*} and $v c_{\Delta}^{*}$ are elementary.

Defining Schemata

Let $\Delta(x, y) \subseteq \mathcal{L}$ and $B \subseteq M^{|y|}$ both be finite. Let $p \in S_{\Delta}(B)$.

Definition

Given a schema

$$
d(y, z)=\left\{d_{\phi}(y, z): \phi \in \Delta\right\} \subseteq \mathcal{L}
$$

and a parameter $c \in M^{|z|}$, we say that $d(y, c)$ defines p iff: for every $\phi \in \Delta$ and $b \in B$, we have

$$
\phi(x, b) \in p \quad \Longleftrightarrow \quad \mathcal{M} \vDash d_{\phi}(b, c) .
$$

UDTFS

Let $\Delta(x, y) \subseteq \mathcal{L}$ be finite.

Definition

We say Δ has uniform definability of types over finite sets (UDTFS) with n parameters iff: there is a finite family \mathcal{F} of schemata each of the form

$$
d\left(y, z_{1}, \ldots, z_{n}\right)=\left\{d_{\phi}\left(y, z_{1}, \ldots, z_{n}\right): \phi \in \Delta\right\}
$$

with $|y|=\left|z_{1}\right|=\cdots=\left|z_{n}\right|$ such that if $B \subseteq M^{|y|}$ is finite and $p(x) \in S_{\Delta}(B)$, then for some $d \in \mathcal{F}$ and $b_{1}, \ldots, b_{n} \in B, d(y, \bar{b})$ defines p.

Fact: This property is elementary.

Definition

If T is an \mathcal{L}-theory, we say Δ has UDTFS in T with n parameters iff:
Δ has UDTFS with n parameters for all models of T.

Finite Breadth \Longrightarrow UDTFS

Let $\Delta(x, y) \subseteq \mathcal{L}$ be finite.
Lemma (5.2)
If breadth $\left(\mathcal{S}_{\Delta}\right)=n<\omega$, then Δ has UDTFS with n parameters.
Proof: For each $\phi \in \Delta$, let $d_{\phi}^{0}\left(y, z_{1}, \ldots, z_{n}\right)$ be $y \neq y$.
For each $\phi \in \Delta$ and each $\bar{\delta} \in \Delta^{n}$, let $d_{\phi}^{\bar{\delta}}\left(y, z_{1}, \ldots, z_{n}\right)$ be

$$
\forall x\left[\bigwedge_{i=1}^{n} \delta_{i}\left(x, z_{i}\right) \longrightarrow \phi(x, y)\right]
$$

We claim that the family $\left\{d^{0}, d^{\bar{\delta}}: \bar{\delta} \in \Delta^{n}\right\}$ uniformly defines Δ-types over finite sets.

Proof of Claim:

Let $B \subseteq M^{|y|}$ be finite, and let $p(x) \in S_{\Delta}(B)$.
If $\forall \phi \in \Delta \quad \forall b \in B \quad \phi(x, b) \notin p: \quad d^{0}$ defines p.
Otherwise:
Let $\left.p\right|_{\Delta}(x)=\{\phi(x, b) \in p: \phi \in \Delta\}$. Since breadth $\left(\mathcal{S}_{\Delta}\right)=n$, there are $\delta_{1}\left(x, c_{1}\right), \ldots,\left.\delta_{n}\left(x, c_{n}\right) \in p\right|_{\Delta}$ such that

$$
\left.p(M) \subseteq p\right|_{\Delta}(M)=\bigcap_{\phi(x, b) \in p \mid \Delta} \phi(M, b)=\bigcap_{i=1}^{n} \delta_{i}\left(M, c_{i}\right) .
$$

For all $\phi \in \Delta$ and $b \in B$, we have

$$
\phi(x, b) \in p \Longleftrightarrow \bigcap \delta_{i}\left(M, c_{i}\right) \subseteq \phi(M, b) \Longleftrightarrow \mathcal{M} \models d_{\phi}^{\bar{\delta}}(b, \bar{c}) .
$$

So $d^{\bar{\delta}}(y, \bar{c})$ defines p.

The VC n Property

Definition

An \mathcal{L}-structure has the $V C n$ property iff: all finite $\Delta(x, y) \subseteq \mathcal{L}$ with $|x|=1$ have UDTFS with n parameters.

Fact: VC n is an elementary property.

Definition

An \mathcal{L}-theory has the VC n property iff:
all of its models have VC n.
Next goal...
Theorem (6.1)
If T is complete and weakly o-minimal, then T has the VC 1 property.

Let T be an \mathcal{L}-theory, and let $\Delta(x, y), \Psi(x, y) \subseteq \mathcal{L}$ both finite.

Lemma (5.5)

If every formula in Δ is T-equivalent to a boolean combination of formulae from Ψ and Ψ has UDTFS in T with n parameters, then Δ has UDTFS in T with n parameters.

Proof: Let $t=|\Psi|$ and $s=2^{t}$. Let $\left(\psi_{j}: j<t\right)$ enumerate Ψ.
For each $\phi \in \Delta$, there exists $\sigma \in{ }^{s \times t} 2$ such that

$$
T \vdash \phi(x, y) \longleftrightarrow \bigvee_{i<s} \bigwedge_{j<t} \psi_{j}^{\sigma(i, j)}(x, y)
$$

Let \mathcal{F} witness that Ψ has UDTFS with n parameters.
For each $d \in \mathcal{F}$ and $\phi \in \Delta$, let d_{ϕ} be

$$
\bigvee_{i<s} \bigwedge_{j<t} d_{\psi_{j}}^{\sigma(i, j)}\left(y, z_{1}, \ldots z_{n}\right)
$$

It follows that $\left\{\left\{d_{\phi}: \phi \in \Delta\right\}: d \in \mathcal{F}\right\}$ witnesses that Δ has UDTFS with n parameters.

Weakly O-Minimal Theories are VC 1

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.

Proof: Let $\mathcal{M} \mid=T$, and let $\Delta(x, y) \subseteq \mathcal{L}$ be finite with $|x|=1$.
By Compactness, there exists $n<\omega$ such that for all $\phi \in \Delta$ and $b \in M^{|y|}$, $\phi(M, b)$ has at most n maximal convex components.

For all $\phi \in \Delta$ and $i<n$, there exists $\phi_{i}(x, y) \in \mathcal{L}$ such that for each $b \in M^{|y|}$,

$$
\phi_{i}(M, b) \text { is the } i^{\text {th }} \text { component of } \phi(M, b) \text {. }
$$

It follows that

$$
\mathcal{M} \models \phi(x, y) \leftrightarrow \bigvee_{i<n} \phi_{i}(x, y)
$$

Proof of Theorem (cont.)

For each $\phi \in \Delta$ and $i<n$, let

$$
\begin{array}{ll}
\phi_{i}^{\leq}(x, y) & \text { be } \exists x_{0}\left[\phi_{i}\left(x_{0}, y\right) \wedge x \leq x_{0}\right] \\
\phi_{i}^{<}(x, y) & \text { be } \forall x_{0}\left[\phi_{i}\left(x_{0}, y\right) \rightarrow x<x_{0}\right] .
\end{array}
$$

It follows that

$$
\mathcal{M} \models \phi_{i}(x, y) \quad \leftrightarrow \quad \phi_{i}^{\leq}(x, y) \wedge \neg \phi_{i}^{<}(x, y)
$$

If we let $\Psi=\left\{\phi_{i}^{<}, \phi_{i}^{\leq}: \phi \in \Delta, i<n\right\}$, each formula in Δ is
T-equivalent to a boolean combination of $2 n$ formulae in Ψ.
For each $\psi \in \Psi$ and $b \in M^{|y|}$, notice that $\psi(M, b)$ is an initial segment of M, so \mathcal{S}_{Ψ} is directed.

Lemma $5.2 \Rightarrow \Psi$ has UDTFS with one parameter.
Lemma $5.5 \Rightarrow \Delta$ has UDTFS with one parameter.

Uniform Bounds on VC Density

Theorem (5.7)

If \mathcal{M} has the VC n property, then every finite $\Delta(x, y) \subseteq \mathcal{L}$ has UDTFS with $n|x|$ parameters.

Corollary (5.8a)

If \mathcal{M} has the VC n property, then for every finite $\Delta(x, y) \subseteq \mathcal{L}$, we have $\operatorname{vc}^{*}(\Delta) \leq n|x|$.

Proof: Given $\Delta(x, y)$ finite, there exists finite \mathcal{F} witnessing UDTFS with $n|x|$ parameters. It follows that $\left|S_{\Delta}(B)\right| \leq|\mathcal{F}||B|^{n|x|}$.

Corollary (5.8b)

If T is complete and has the VC n property, then for all $m<\omega$, we have $\mathrm{vc}^{T}(m) \leq n m$.

Uniform Bounds on VC Density

Recall...
Theorem (6.1)
If T is complete and weakly o-minimal, then T has the VC 1 property. It follows that...

Corollary (6.1a)
If T is complete and weakly o-minimal and $\Delta(x, y) \subseteq \mathcal{L}$ is finite, then $\operatorname{vc}^{*}(\Delta) \leq|x|$.

Corollary (6.1b)
If T is complete and weakly o-minimal, then $\mathrm{vc}^{\top}(n) \leq n$ for all $n<\omega$.

Application: RCVF

Let $\mathcal{L}=\{+,-, \cdot, 0,1,<, \mid\}$.
RCVF (with a proper convex valuation ring) where \mid is the divisibility predicate (i.e., $a \mid b \Leftrightarrow v(a) \leq v(b)$) is a complete \mathcal{L}-theory.
Cherlin and Dickmann showed RCVF has quantifier elimination and is, therefore, weakly o-minimal.

Corollary (6.2a)
In RCVF, if $\Delta(x, y) \subseteq \mathcal{L}$ is finite, then $\operatorname{vc}^{*}(\Delta) \leq|x|$.

```
Corollary (6.2b)
vc}\mp@subsup{}{}{RCVF}(n)\leqn\mathrm{ for all }n<\omega\mathrm{ .
```


Application: $\operatorname{ACVF}_{(0,0)}$

Let $\mathcal{L}=\{+,-, \cdot, 0,1, \mid\}$.
$\operatorname{ACVF}_{(0,0)}$ where \mid is the divisibility predicate is complete in \mathcal{L}.
Let $R \models \operatorname{RCVF}$ (in $\mathcal{L} \cup\{<\}$).
Consider $R(i)$ where $i^{2}=-1$ and

$$
a+b i\left|c+d i \Leftrightarrow a^{2}+b^{2}\right| c^{2}+d^{2} .
$$

It follows that $R(i) \models \operatorname{ACVF}_{(0,0)}$ and is interpretable in R.

Corollary (6.3a)

In $\operatorname{ACVF}_{(0,0)}$, if $\Delta(x, y) \subseteq \mathcal{L}$ is finite, then $\mathrm{vc}^{*}(\Delta) \leq 2|x|$.

Corollary (6.3b)

$\operatorname{vc}^{\operatorname{ACVF}_{(0,0)}(n)}(2 n$, for all $n<\omega$.

Counting Types

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L}-structure, $\phi(x, y) \in \mathcal{L}$ with $|x|=1$, and $B \subseteq M^{|y|}$.

Open Questions

1 For every language \mathcal{L} and every complete \mathcal{L}-theory T, does $\mathrm{vc}^{T}(1)<\infty$ imply $\mathrm{vc}^{\top}(n)<\infty$ for all $n<\omega$?

$$
\begin{aligned}
\text { RCVF : Yes } & \operatorname{ACVF}_{(0, p)}: ? \\
\operatorname{ACVF}_{(0,0)}: \text { Yes } & \operatorname{ACVF}_{(p, p)}: ?
\end{aligned}
$$

2 If so, is there some bounding function β, independent of \mathcal{L} and T, such that $\mathrm{vc}^{T}(n)<\beta\left(\mathrm{vc}^{T}(1), n\right)$?

$$
\begin{array}{rll}
\operatorname{RCVF}: \beta(n)=n & \operatorname{ACVF}_{(0, p)}: ? \\
\operatorname{ACVF}_{(0,0)}: \beta(n)=2 n & \operatorname{ACVF}_{(p, p)}: ?
\end{array}
$$

3 Is it possible for $\mathrm{vc}(\phi)$ to be irrational?

We summarize the implications between the properties of a theory T discussed above in the following diagram:

Here the arrows marked with an exclamation mark are known not to be reversible.
A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949.

