VC Dimension, VC Density, and an Application to Algebraically Closed Valued Fields

Roland Walker

University of Illinois at Chicago

2016

Counting Types

Let $\mathcal L$ be a language, $\mathcal M$ an $\mathcal L$ -structure, $\phi(x,y)\in \mathcal L$ with |x|=1, and $B\subseteq M^{|y|}$.

References

A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949

V. Guingona, On VC-density in VC-minimal theories, arXiv:1409.8060 [math.LO].

P. Simon, A Guide to NIP Theories, Cambridge University Press (2015).

Set Systems

Definition

Let X be a set and $S \subseteq \mathcal{P}(X)$. We call the pair (X, S) a set system.

Definition

Given $A \subseteq X$, define

$$\mathcal{S} \cap A = \{B \cap A : B \in \mathcal{S}\}.$$

We say A is *shattered* by S iff: $S \cap A = \mathcal{P}(A)$.

The Shatter Function and VC Dimension

Definition

The function $\pi_{\mathcal{S}}:\omega\to\omega$ given by

$$\pi_{\mathcal{S}}(n) = \max\{|\mathcal{S} \cap A| : A \in [X]^n\}$$

is called the *shatter function* of S.

Definition

The Vapnik-Chervonenkis (VC) dimension of S is

$$VC(S) = \sup\{n < \omega : S \text{ shatters some } A \in [X]^n\}$$
$$= \sup\{n < \omega : \pi_S(n) = 2^n\}.$$

Example: $X = \mathbb{R}, \ \mathcal{S} = \mathsf{Half}\mathsf{-Spaces}$

 $VC(S) \ge 2$:

VC(S) < 3:

Example: $X = \mathbb{R}^2$, S = Half-Spaces

 $VC(S) \ge 3$:

VC(S) < 4:

VC Density and the Sauer-Shelah Lemma

Definition

The VC density of S is

$$\operatorname{vc}(\mathcal{S}) = \inf \left\{ r \in \mathbb{R}^{>0} : \pi_{\mathcal{S}}(n) = O(n^r) \right\} = \limsup_{n \to \omega} \frac{\log \pi(n)}{\log n}.$$

Lemma (Sauer-Shelah)

If $VC(S) = d < \omega$, then for all $n \ge d$, we have

$$\pi_{\mathcal{S}}(n) \leq \binom{n}{0} + \cdots + \binom{n}{d} = O(n^d).$$

Corollary

 $vc(S) \leq VC(S)$.

Example: When $\mathcal S$ is "uniform," VC dimension and VC density agree.

Let X be an infinite set and $S = [X]^{\leq d}$ for some $d < \omega$.

We have

$$\pi_{\mathcal{S}}(n) = \binom{n}{0} + \cdots + \binom{n}{d},$$

SO

$$VC(S) = vc(S) = d$$
.

Example: VC dimension is more susceptible to local anomalies than VC density.

Let
$$X = \omega, m < \omega$$
, and $S = \mathcal{P}(m)$.

It follows that

$$\pi_{\mathcal{S}}(n) = \begin{cases} 2^n & \text{if } n \leq m \\ 2^m & \text{otherwise.} \end{cases}$$

Sc

$$VC(S) = m$$

and

$$\operatorname{vc}(\mathcal{S}) = \limsup_{n \to \omega} \frac{\log 2^m}{\log n} = 0.$$

The Dual Shatter Function

Definition

Given $A_1, ..., A_n \subseteq X$, let $S(A_1, ..., A_n)$ denote the set of nonempty atoms in the Boolean algebra generated by $A_1, ..., A_n$. That is

$$S(A_1,\cdots,A_n)=\left\{\bigcap_{i=1}^nA_i^{\sigma(i)}:\sigma\in {}^n2\right\}\setminus\varnothing$$

where $A_i^1 = A_i$ and $A_i^0 = X \setminus A_i$.

Definition

The function $\pi_{\mathcal{S}}^*:\omega\to\omega$ given by

$$\pi_{\mathcal{S}}^*(n) = \max\{|S(A_1, ..., A_n)| : A_1, ...A_n \in \mathcal{S}\}$$

is called the *dual shatter function* of S.

Independence Dimension and Dual VC Density

Definition

The independence dimension (a.k.a. dual VC dimension) of ${\mathcal S}$ is

$$\mathsf{IN}(\mathcal{S}) = \mathsf{VC}^*(\mathcal{S}) = \sup \left\{ n < \omega : \pi_{\mathcal{S}}^*(n) = 2^n \right\}.$$

Definition

The dual VC density of S is

$$\operatorname{vc}^*(\mathcal{S}) = \inf \left\{ r \in \mathbb{R}^{>0} : \pi_{\mathcal{S}}^*(n) = O(n^r) \right\}.$$

Example: $X = \mathbb{R}, \ \mathcal{S} = \mathsf{Half}\text{-}\mathsf{Spaces}$

$$\mathsf{IN}(\mathcal{S}) \geq 1$$
:

$\mathsf{IN}(\mathcal{S}) < 2$:

Example: $X = \mathbb{R}^2$, S = Half-Spaces

 $\mathsf{IN}(\mathcal{S}) \geq 2$:

Example: $X = \mathbb{R}^2$, S = Half-Spaces

IN(S) < 3:

Breadth and Directed Systems

Definition

Suppose there is a $t < \omega$ such that for all n > t, if $A \in [S]^n$ and $\bigcap A \neq \emptyset$, then there is a subfamily $B \in [A]^t$ such that $\bigcap A = \bigcap B$. We call the least such t the *breadth* of S and denote it as breadth(S).

Definition

We call S directed iff: breadth(S) = 1.

Example: Let (K, Γ, v) be a valued field.

The set system (X, S) where X = K and

$$\mathcal{S} = \{B_{\gamma}(a) : a \in K, \gamma \in \Gamma\} \cup \{\overline{B}_{\gamma}(a) : a \in K, \gamma \in \Gamma\}$$

is directed.

Independence Dimension is Bounded by Breadth

Lemma

 $\mathsf{IN}(\mathcal{S}) \leq \mathsf{breadth}(\mathcal{S}).$

Proof: Suppose $0 < n = IN(S) < \omega$.

There exists $A \in [S]^n$ such that $S(A) = 2^n$.

It follows that $\bigcap \mathcal{A} \neq \emptyset$.

Let $A_0 \in \mathcal{A}, \ \mathcal{B} = \mathcal{A} \setminus A_0$.

Since $(X \setminus A_0) \cap (\bigcap \mathcal{B}) \neq \emptyset$, we have $\bigcap \mathcal{A} \neq \bigcap \mathcal{B}$.

It follows that breadth(S) > n-1.

Set Systems in a Model-Theoretic Context

Consider a sorted language ${\cal L}$ with sorts indexed by ${\it I}$.

Let \mathcal{M} be an \mathcal{L} -structure with domains $(M_i : i \in I)$.

Definition

Given an \mathcal{L} -formula $\phi(x,y)$ where $x=(x_1^{i_1},...,x_s^{i_s})$ and $y=(y_1^{j_1},...,y_t^{j_t})$, define

$$\mathcal{S}_{\phi} = \{ \phi(X, b) : b \in Y \}$$

where $X = M_{i_1} \times \cdots \times M_{i_s}$ and $Y = M_{j_1} \times \cdots \times M_{j_t}$.

It follows that (X, \mathcal{S}_{ϕ}) is a set system. To ease notation, we let:

 π_{ϕ} denote $\pi_{\mathcal{S}_{\phi}}$, $VC(\phi)$ denote $VC(\mathcal{S}_{\phi})$, and $vc(\phi)$ denote $vc(\mathcal{S}_{\phi})$.

Similarly, we use π_{ϕ}^* for $\pi_{\mathcal{S}_{\phi}}^*$, $VC^*(\phi)$ for $VC^*(\mathcal{S}_{\phi})$, and $vc^*(\phi)$ for $vc^*(\mathcal{S}_{\phi})$.

The dual shatter function of ϕ is really counting ϕ -types.

By definition, we have $\pi_{\phi}^*(n) = \max\{|S(\phi(X, b) : b \in B)| : B \in [Y]^n\}.$

Let $B \in [Y]^n$. Recall that

$$S(\phi(X,b):b\in B)=\left\{\bigcap_{b\in B}\phi^{\sigma(b)}(X,b):\sigma\in {}^{B}2
ight\}\setminus\varnothing.$$

There is a bijection

$$S(\phi(X,b):b\in B)\longrightarrow \big\{\operatorname{tp}_\phi(a/B):a\in X\big\}=S_\phi(B)$$

given by

$$\bigcap_{b\in B}\phi^{\sigma(b)}(X,b)\longmapsto \left\{\phi^{\sigma(b)}(x,b):b\in B\right\}.$$

It follows that

$$|S(\phi(X,b):b\in B)|=|S_{\phi}(B)|.$$

The Dual of a Formula

Definition

We call a formula $\phi(x; y)$ a partitioned formula with object variable(s) $x = (x_1, ..., x_s)$ and parameter variable(s) $y = (y_1, ..., y_t)$.

Definition

We let $\phi^*(y; x)$ denote the *dual* of $\phi(x; y)$, meaning $\phi^*(y; x)$ is $\phi(x; y)$ but we view y as the object and x as the parameter.

It follows that

$$S_{\phi^*} = \{\phi^*(Y, a) : a \in X\}$$

= $\{\phi(a, Y) : a \in X\}.$

The shatter function of ϕ^* is also counting ϕ -types.

By definition, we have $\pi_{\phi^*}(n) = \max\{|S_{\phi^*} \cap B| : B \in [Y]^n\}$.

Let $B \in [Y]^n$. It follows that

$$S_{\phi^*} \cap B = \{\phi^*(B, a) : a \in X\}$$
$$= \{\phi(a, B) : a \in X\}$$

There is a bijection

$$\{\phi(a,B):a\in X\}\longrightarrow \{\operatorname{tp}_\phi(a/B):a\in X\}=S_\phi(B)$$

given by

$$\phi(a,B) \longmapsto \operatorname{tp}_{\phi}(a/B).$$

It follows that

$$|\mathcal{S}_{\phi^*} \cap B| = |\mathcal{S}_{\phi}(B)|.$$

Duality in a Model-Theoretic Context

Lemma

The dual shatter function of ϕ is the shatter function of ϕ^* .

That is
$$\pi_{\phi}^* = \pi_{\phi^*}$$
.

Proof: For all $n < \omega$, we have

$$\pi_{\phi}^{*}(n) = \max\{|S(\phi(X,b):b\in B)|:B\in [Y]^{n}\}\ = \max\{|S_{\phi}(B)|:B\in [Y]^{n}\}\ = \max\{|S_{\phi^{*}}\cap B|:B\in [Y]^{n}\}\ = \pi_{\phi^{*}}(n).$$

Corollary

$$VC^*(\phi) = VC(\phi^*)$$
 and $vc^*(\phi) = vc(\phi^*)$.

$$VC(\phi) < \omega \iff VC^*(\phi) < \omega$$

Lemma

$$VC(\phi) < 2^{VC^*(\phi)+1}$$
.

Proof: Suppose $VC(\phi) \ge 2^n$, there exists $A \in [X]^{2^n}$ shattered by S_{ϕ} .

Let $\{a_J: J \subseteq n\}$ enumerate A.

For all i < n, let $b_i \in Y$ such that $\mathcal{M} \models \phi(a_J, b_i) \iff i \in J$.

Let $B = \{b_i : i < n\}.$

It follows that S_{ϕ^*} shatters B, so $VC(\phi^*) \geq n$.

Corollary

$$VC^*(\phi) < 2^{VC(\phi)+1}.$$

Corollary

 $VC(\phi) < \omega \iff VC^*(\phi) < \omega.$

Duality in the Classical Context

Given (X, S) a set system, let $\mathcal{M} = (X, S, \in)$, and $\phi(x, y)$ be $x \in y$.

It follows that $S = S_{\phi}$, so by definition, $\pi_{S} = \pi_{\phi}$ and $\pi_{S}^{*} = \pi_{\phi}^{*}$.

Let $X^* = \mathcal{S}$ and

$$S^* = \{ \{ B \in S : a \in B \} : a \in X \}$$
$$= \{ \phi^*(S, a) : a \in X \}.$$

It follows that $\mathcal{S}^* = \mathcal{S}_{\phi^*}$, so by definition, $\pi_{\mathcal{S}^*} = \pi_{\phi^*}$ and $\pi_{\mathcal{S}^*}^* = \pi_{\phi^*}^*$.

Definition

We call (X^*, S^*) the *dual* of (X, S).

Lemma

$$\pi_{\mathcal{S}}^* = \pi_{\mathcal{S}^*}$$
 and $\pi_{\mathcal{S}^*}^* = \pi_{\mathcal{S}}$.

 $\text{Proof:} \quad \pi_{\mathcal{S}}^* = \pi_{\phi}^* = \pi_{\phi^*} = \pi_{\mathcal{S}^*} \quad \text{ and } \quad \pi_{\mathcal{S}^*}^* = \pi_{\phi^*}^* = \pi_{\phi} = \pi_{\mathcal{S}}.$

Duality in the Classical Context

Corollary

$$VC^*(S) = VC(S^*)$$
 and $vc^*(S) = vc(S^*)$.

Corollary

For any set system (X, S), we have

$$VC(S) < 2^{VC^*(S)+1}$$

and

$$VC^*(S) < 2^{VC(S)+1}$$
.

Corollary

$$VC(S) < \omega \iff VC^*(S) < \omega.$$

References

A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S. Starchenko, *Vapnik-Chervonenkis density in some theories without the independence property, I*, Trans. Amer. Math. Soc. 368 (2016), 5889-5949.

V. Guingona, On VC-density in VC-minimal theories, arXiv:1409.8060 [math.LO].

P. Simon, A Guide to NIP Theories, Cambridge University Press (2015).

Recap: Set Systems in a Model Theoretic Context

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L} -structure, and $\phi(x,y) \in \mathcal{L}$.

$$\mathcal{S}_{\phi} = \left\{\phi\left(M^{|\mathbf{x}|}, b\right) : b \in M^{|\mathbf{y}|}\right\}$$
 $\pi_{\phi}(n) = \max\left\{|\mathcal{S}_{\phi} \cap A| : A \in \left[M^{|\mathbf{x}|}\right]^{n}\right\}$
 $= \max\left\{|\mathcal{S}_{\phi^{*}}(A)| : A \in \left[M^{|\mathbf{x}|}\right]^{n}\right\}$
 $\mathsf{VC}(\phi) = \sup\left\{n < \omega : \pi_{\phi}(n) = 2^{n}\right\}$
 $\mathsf{vc}(\phi) = \inf\left\{r \in \mathbb{R}^{>0} : \pi_{\phi}(n) = O(n^{r})\right\}$

Recap: Duality in a Model Theoretic Context

$$S(A_1, \dots, A_n) = \left\{\bigcap_{i=1}^n A_i^{\sigma(i)} : \sigma \in {}^n 2\right\} \setminus \varnothing$$

$$egin{aligned} \pi_{\phi}^*(n) &= \max\left\{ \left| S(A_1,...,A_n) \right| : A_1,...,A_n \in \mathcal{S}_{\phi}
ight\} \ &= \max\left\{ \left| S_{\phi}(B) \right| : B \in \left[M^{|\mathcal{Y}|}
ight]^n
ight\} \end{aligned}$$

$$\mathsf{IN}(\phi) = \mathsf{VC}^*(\phi) = \sup \left\{ n < \omega : \pi_\phi^*(n) = 2^n \right\}$$

$$\operatorname{vc}^*(\phi) = \inf \left\{ r \in \mathbb{R}^{>0} : \pi_\phi^*(n) = O(n^r) \right\}$$

Elementary Properties

Lemma

 π_ϕ^* is elementary (i.e., elementary equivalent $\mathcal L$ -structures agree on π_ϕ^*).

Proof: Given $n < \omega$, let $\sigma \in \mathcal{P}(n)$ 2. Consider the \mathcal{L} -sentence

$$\exists y_1, ..., y_n \bigwedge_{J \subseteq n} \left[\exists x \bigwedge_{i=1}^n \phi^{[i \in J]}(x, y_i) \right]^{\sigma(J)}.$$

Corollary

 $VC^*(\phi)$ and $vc^*(\phi)$ are elementary.

Corollary

 $VC(\phi)$ and $vc(\phi)$ are elementary.

NIP Formulae

Let T be a complete \mathcal{L} -theory, and let $\phi(x,y) \in \mathcal{L}$.

Definition

We say ϕ has the *independence property (IP)* iff: for some $\mathcal{M} \models \mathcal{T}$, there exists sequences $(a_J : J \subseteq \omega) \subseteq M^{|x|}$ and $(b_i : i < \omega) \subseteq M^{|y|}$ such that $\mathcal{M} \models \phi(a_I, b_i) \iff i \in J$.

If ϕ is not IP, we say ϕ is *NIP*.

Lemma

$$\phi$$
 is IP \iff IN(ϕ) = ω .

Proof: Compactness.

Corollary

$$\phi$$
 is NIP \iff IN(ϕ) $< \omega \iff$ VC(ϕ) $< \omega$.

NIP and vc^T

Let T be a complete \mathcal{L} -theory.

Definition

We say T is NIP iff: every partitioned \mathcal{L} -formula is NIP.

Fact: It is sufficient to check all $\phi(x, y)$ with |x| = 1.

Definition

The VC density of T is the function

$$\mathsf{vc}^{\mathsf{T}}:\omega\longrightarrow\mathbb{R}^{\geq0}\cup\{\infty\}$$

defined by

$$vc^{T}(n) = \sup\{vc(\phi) : \phi(x, y) \in \mathcal{L}, |y| = n\}$$
$$= \sup\{vc^{*}(\phi) : \phi(x, y) \in \mathcal{L}, |x| = n\}.$$

NIP and vc^T

Lemma

If $vc^{T}(n) < \infty$ for all $n < \omega$, then T is NIP.

Note: Converse is not true in general; e.g., consider T^{eq} where T is NIP.

Open Questions:

- 1 For every language \mathcal{L} and every complete \mathcal{L} -theory T, does $\operatorname{vc}^T(1) < \infty$ imply $\operatorname{vc}^T(n) < \infty$ for all $n < \omega$?
- 2 If so, is there some bounding function β , independent of \mathcal{L} and T, such that $vc^T(n) < \beta(vc^T(1), n)$?

Finite Types

Let $\Delta(x, y)$ be a finite set of \mathcal{L} -formulae (with free variables x and y).

Definition

The set system generated by Δ is

$$S_{\Delta} = \left\{ \phi\left(M^{|x|}, b\right) : \phi(x, y) \in \Delta, \ b \in M^{|y|} \right\}.$$

The dual shatter function of Δ is

$$\pi_{\Delta}^*(n) = \max\left\{|S_{\Delta}(B)| : B \in \left[M^{|y|}\right]^n\right\}.$$

The dual VC density of Δ is

$$vc^*_{\Delta}(n) = \inf\{r \in \mathbb{R}^{>0} : \pi^*_{\Delta}(n) = O(n^r)\}.$$

Fact: π_{Λ}^* and vc_{Λ}^* are elementary.

Defining Schemata

Let $\Delta(x,y) \subseteq \mathcal{L}$ and $B \subseteq M^{|y|}$ both be finite. Let $p \in S_{\Delta}(B)$.

Definition

Given a schema

$$d(y,z) = \{d_{\phi}(y,z) : \phi \in \Delta\} \subseteq \mathcal{L}$$

and a parameter $c \in M^{|z|}$, we say that d(y,c) defines p iff: for every $\phi \in \Delta$ and $b \in B$, we have

$$\phi(x,b) \in p \iff \mathcal{M} \models d_{\phi}(b,c).$$

UDTFS

Let $\Delta(x, y) \subseteq \mathcal{L}$ be finite.

Definition

We say Δ has uniform definability of types over finite sets (UDTFS) with n parameters iff: there is a finite family $\mathcal F$ of schemata each of the form

$$d(y, z_1, ..., z_n) = \{d_{\phi}(y, z_1, ..., z_n) : \phi \in \Delta\}$$

with $|y| = |z_1| = \cdots = |z_n|$ such that if $B \subseteq M^{|y|}$ is finite and $p(x) \in S_{\Delta}(B)$, then for some $d \in \mathcal{F}$ and $b_1, ..., b_n \in B$, $d(y, \overline{b})$ defines p.

Fact: This property is elementary.

Definition

If T is an \mathcal{L} -theory, we say Δ has UDTFS in T with n parameters iff: Δ has UDTFS with n parameters for all models of T.

Finite Breadth ⇒ UDTFS

Let $\Delta(x, y) \subseteq \mathcal{L}$ be finite.

Lemma (5.2)

If breadth(S_{Δ}) = $n < \omega$, then Δ has UDTFS with n parameters.

Proof: For each $\phi \in \Delta$, let $d_{\phi}^{0}(y, z_{1}, ..., z_{n})$ be $y \neq y$.

For each $\phi\in\Delta$ and each $\overline{\delta}\in\Delta^n$, let $d_\phi^{\overline{\delta}}(y,z_1,...,z_n)$ be

$$\forall x \left[\bigwedge_{i=1}^n \delta_i(x, z_i) \longrightarrow \phi(x, y) \right].$$

We claim that the family $\left\{d^0,\ d^{\overline{\delta}}: \overline{\delta} \in \Delta^n\right\}$ uniformly defines Δ -types over finite sets.

Proof of Claim:

Let $B \subseteq M^{|y|}$ be finite, and let $p(x) \in S_{\Delta}(B)$.

If $\forall \phi \in \Delta \quad \forall b \in B \quad \phi(x, b) \notin p : \quad d^0 \text{ defines } p$.

Otherwise:

Let $p|_{\Delta}(x) = {\phi(x, b) \in p : \phi \in \Delta}$. Since breadth $(S_{\Delta}) = n$, there are $\delta_1(x, c_1), ..., \delta_n(x, c_n) \in p|_{\Delta}$ such that

$$p(M) \subseteq p|_{\Delta}(M) = \bigcap_{\phi(x,b)\in\rho|_{\Delta}} \phi(M,b) = \bigcap_{i=1}^{n} \delta_{i}(M,c_{i}).$$

For all $\phi \in \Delta$ and $b \in B$, we have

$$\phi(x,b) \in p \iff \bigcap \delta_i(M,c_i) \subseteq \phi(M,b) \iff \mathcal{M} \models d_{\phi}^{\overline{\delta}}(b,\overline{c}).$$

So $d^{\overline{\delta}}(y,\overline{c})$ defines p.

The VC n Property

Definition

An \mathcal{L} -structure has the VC n property iff: all finite $\Delta(x,y)\subseteq\mathcal{L}$ with |x|=1 have UDTFS with n parameters.

Fact: VC *n* is an elementary property.

Definition

An \mathcal{L} -theory has the VC n property iff: all of its models have VC n.

Next goal...

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.

Let T be an \mathcal{L} -theory, and let $\Delta(x,y), \Psi(x,y) \subseteq \mathcal{L}$ both finite.

Lemma (5.5)

If every formula in Δ is T-equivalent to a boolean combination of formulae from Ψ and Ψ has UDTFS in T with n parameters, then Δ has UDTFS in T with n parameters.

Proof: Let $t = |\Psi|$ and $s = 2^t$. Let $(\psi_j : j < t)$ enumerate Ψ . For each $\phi \in \Delta$, there exists $\sigma \in {}^{s \times t}2$ such that

$$T \vdash \phi(x,y) \longleftrightarrow \bigvee_{i < s} \bigwedge_{j < t} \psi_j^{\sigma(i,j)}(x,y).$$

Let \mathcal{F} witness that Ψ has UDTFS with n parameters.

For each $d \in \mathcal{F}$ and $\phi \in \Delta$, let d_{ϕ} be

$$\bigvee_{i < s} \bigwedge_{j < t} d_{\psi_j}^{\sigma(i,j)}(y,z_1,...z_n).$$

It follows that $\{\{d_{\phi}: \phi \in \Delta\}: d \in \mathcal{F}\}$ witnesses that Δ has UDTFS with n parameters.

Weakly O-Minimal Theories are VC 1

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.

Proof: Let $\mathcal{M} \models \mathcal{T}$, and let $\Delta(x,y) \subseteq \mathcal{L}$ be finite with |x| = 1.

By Compactness, there exists $n<\omega$ such that for all $\phi\in\Delta$ and $b\in M^{|y|}$,

 $\phi(M,b)$ has at most n maximal convex components.

For all $\phi \in \Delta$ and i < n, there exists $\phi_i(x, y) \in \mathcal{L}$ such that for each $b \in M^{|y|}$,

 $\phi_i(M, b)$ is the i^{th} component of $\phi(M, b)$.

It follows that

$$\mathcal{M} \models \phi(x, y) \leftrightarrow \bigvee_{i < n} \phi_i(x, y).$$

Proof of Theorem (cont.)

For each $\phi \in \Delta$ and i < n, let

$$\phi_i^{\leq}(x,y)$$
 be $\exists x_0 [\phi_i(x_0,y) \land x \leq x_0]$
 $\phi_i^{\leq}(x,y)$ be $\forall x_0 [\phi_i(x_0,y) \rightarrow x < x_0].$

It follows that

$$\mathcal{M} \models \phi_i(x,y) \quad \leftrightarrow \quad \phi_i^{\leq}(x,y) \land \neg \phi_i^{\leq}(x,y).$$

If we let $\Psi = \{\phi_i^<, \ \phi_i^\le : \ \phi \in \Delta, \ i < n\}$, each formula in Δ is T-equivalent to a boolean combination of 2n formulae in Ψ .

For each $\psi \in \Psi$ and $b \in M^{|y|}$, notice that $\psi(M, b)$ is an initial segment of M, so S_{Ψ} is directed.

Lemma $5.2 \Rightarrow \Psi$ has UDTFS with one parameter.

Lemma $5.5 \Rightarrow \Delta$ has UDTFS with one parameter.

Uniform Bounds on VC Density

Theorem (5.7)

If \mathcal{M} has the VC n property, then every finite $\Delta(x,y) \subseteq \mathcal{L}$ has UDTFS with n|x| parameters.

Corollary (5.8a)

If \mathcal{M} has the VC n property, then for every finite $\Delta(x,y) \subseteq \mathcal{L}$, we have $vc^*(\Delta) \le n|x|$.

Proof: Given $\Delta(x,y)$ finite, there exists finite \mathcal{F} witnessing UDTFS with n|x| parameters. It follows that $|S_{\Delta}(B)| \leq |\mathcal{F}||B|^{n|x|}$.

Corollary (5.8b)

If T is complete and has the VC n property, then for all $m < \omega$, we have $vc^{T}(m) \leq nm$.

Uniform Bounds on VC Density

Recall...

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.

It follows that...

Corollary (6.1a)

If T is complete and weakly o-minimal and $\Delta(x,y) \subseteq \mathcal{L}$ is finite, then $\mathsf{vc}^*(\Delta) \leq |x|$.

Corollary (6.1b)

If T is complete and weakly o-minimal, then $vc^{T}(n) \leq n$ for all $n < \omega$.

Application: RCVF

Let
$$\mathcal{L} = \{+, -, \cdot, 0, 1, <, |\}.$$

RCVF (with a proper convex valuation ring) where | is the divisibility predicate (i.e., $a|b \Leftrightarrow v(a) \leq v(b)$) is a complete \mathcal{L} -theory.

Cherlin and Dickmann showed RCVF has quantifier elimination and is, therefore, weakly *o*-minimal.

Corollary (6.2a)

In RCVF, if $\Delta(x,y) \subseteq \mathcal{L}$ is finite, then $vc^*(\Delta) \leq |x|$.

Corollary (6.2b)

 $\operatorname{vc}^{\mathsf{RCVF}}(n) \leq n \text{ for all } n < \omega.$

Application: $ACVF_{(0,0)}$

Let
$$\mathcal{L} = \{+, -, \cdot, 0, 1, |\}.$$

 $\mathsf{ACVF}_{(0,0)}$ where | is the divisibility predicate is complete in \mathcal{L} .

Let
$$R \models \mathsf{RCVF}$$
 (in $\mathcal{L} \cup \{<\}$).

Consider R(i) where $i^2 = -1$ and

$$a + bi \mid c + di \Leftrightarrow a^2 + b^2 \mid c^2 + d^2$$
.

It follows that $R(i) \models ACVF_{(0,0)}$ and is interpretable in R.

Corollary (6.3a)

In ACVF_(0,0), if $\Delta(x,y) \subseteq \mathcal{L}$ is finite, then $vc^*(\Delta) \leq 2|x|$.

Corollary (6.3b)

 $\operatorname{vc}^{\operatorname{ACVF}_{(0,0)}}(n) \leq 2n$, for all $n < \omega$.

Counting Types

Let $\mathcal L$ be a language, $\mathcal M$ an $\mathcal L$ -structure, $\phi(x,y)\in \mathcal L$ with |x|=1, and $B\subseteq M^{|y|}$.

Open Questions

1 For every language \mathcal{L} and every complete \mathcal{L} -theory T, does $\operatorname{vc}^T(1) < \infty$ imply $\operatorname{vc}^T(n) < \infty$ for all $n < \omega$?

RCVF : Yes
$$ACVF_{(0,p)}$$
 : ?
 $ACVF_{(0,0)}$: Yes $ACVF_{(p,p)}$: ?

2 If so, is there some bounding function β , independent of \mathcal{L} and \mathcal{T} , such that $vc^{\mathcal{T}}(n) < \beta(vc^{\mathcal{T}}(1), n)$?

RCVF :
$$\beta(n) = n$$
 ACVF_(0,p) : ?
ACVF_(0,0) : $\beta(n) = 2n$ ACVF_(p,p) : ?

3 Is it possible for $vc(\phi)$ to be irrational?

We summarize the implications between the properties of a theory T discussed above in the following diagram:

Here the arrows marked with an exclamation mark are known not to be reversible.

A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S. Starchenko, *Vapnik-Chervonenkis density in some theories without the independence property, I*, Trans. Amer. Math. Soc. 368 (2016), 5889-5949.